Portalachsen mit Zahnstangenantrieb und Zubehöre

TECNO CENTER s.r.l. C.so Lombardia, 41 - 10078 Venaria Reale (TO) ITALY

Tel. +39 011 455 11 21

Fax. +39 011 455 75 95

www.tecno-center.it

S.A.R.L.

94140 Alfortville Tel. +33 1 45 18 43 70

RATIO-CUT

ZARIAN

S.L.

Bayreuther Str. 5

D-95615 Marktredwitz

Tel. +49 923 16 03-851 Fax. +49 923 16 03-859

IBALTEC SISTEMAS

C/Josep Soler 74-76 Bjs 08310 Argentona (Barcelona)

Tel. +34 937 56 11 53 Fax. +34 937 97 40 34

http://www.ibaltec.com E-mail: info@ibaltec.com C.Z.T. TECH MAX

Tel. +48 426 59 97 01 Fax. +48 426 59 97 01

Ausgaben ungü^ltig. Zeichnungsänderungen und Änderungen technischer Merkmale vorbehalten.

http://www.czt-tech-max.pl E-mail: l.osiewala@czt-tech-max.pl Hiermit werden alle vorherigen

Nachdruck, auch auszugsweise, nur mit schriftlicher Genehmigung der Fa. Tecno Center S.r.l.
Alle Rechte vorbehalten.
Dieser Katalog wurde vor seiner Veröffentlichung sorgfältig in allen Teilen kontrolliert. Trotzdem wird jede Haftung im Fall von Fehlern oder Auslassungen abgelehnt

Tecno Center ist nach UNI EN ISO 9001:2000 und

1 Stalowa Str. 91 - 859 Lodz (Polland)

E-mail: info@zarian.scherdel.de

E-mail: info@tecno-center.it

AGORA TECHNIQUE

8 Bis Rue Volta, Parc Volta

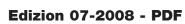
Fax. +33 1 45 18 43 71

http://www.agora-technique.com

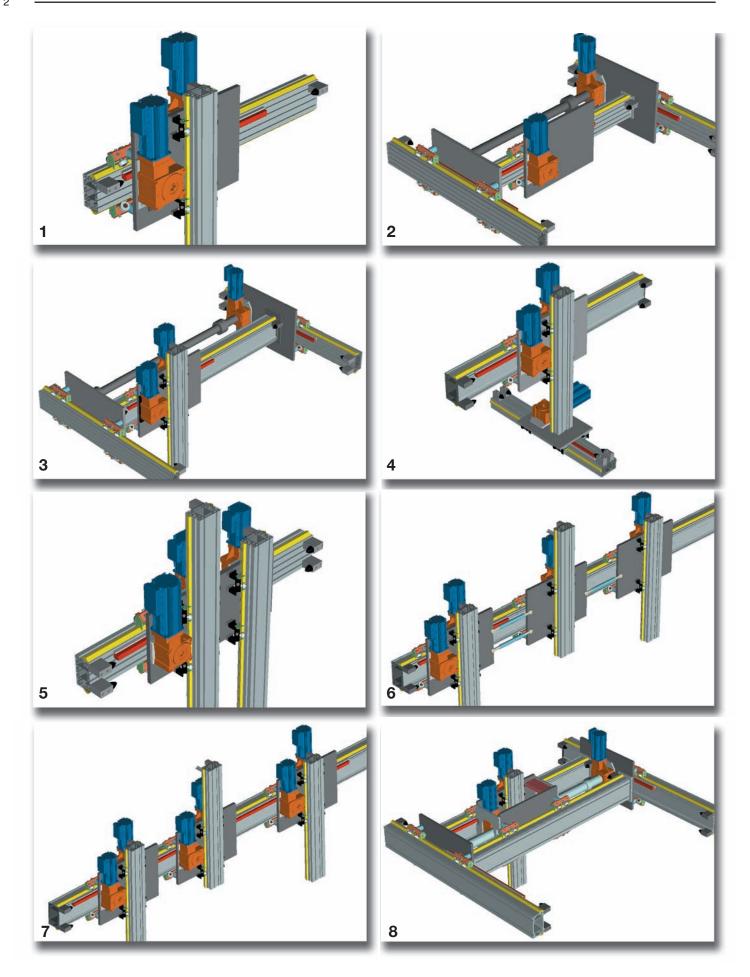
LINEARTECHNIK GmbH

http://www.portalachsen.de E-mail: lineartechnik@ratio-cut.de

BEWEGUNGSSYSTEME GmbH


Wittighöfer Straße 17 D-32657 Lemgo Tel. +49 5261 666 506 Fax. +49 5261 668 741

E-mail: agora@agora-technique.com


EUROPÄISCHE PARTNER:

EINLE	<u>ITUNG</u>	
	Anwendungsbeispiele	2
	Materialspezifikationen	3
	3-Achsen-Raumportale	4
	Bestellcodierung mit Zusatzteille	5
	Tabelle für die Dimensionierung	6
	Auslegungstabelle	7
	Montagevorschriften	8
	Schmierung / Genauigkeit	9
Profilüb		10
PORTA	ALACHSEN	
	PA 2X - PAS 2X	16
	PA 3X - PAS 3X	18
	PA 4X - PAS 4X	20
	PA 5X - PAS 5X	22
	PA 6X - PAS 6X	24
	PA 8X - PAS 8X	26
	PA 10X - PAS 10X	28
2 - A C H	ISEN-PORTALSYSTEME	
	PA 2/1 - PAS 2/1	30
	PA 3/1 - PAS 3/1	32
	PA 4/1 - PAS 4/1	34
	PA 5/2 - PAS 5/2	36
	PA 6/2 - PAS 6/2	38
	PA 6/4 - PAS 6/4	40
	PA 8/3 - PAS 8/3	42
	PA 8/6 - PAS 8/6	44
	PA 10/6 - PAS 10/6	46
	PA 10/8 - PAS 10/8	48
ZUBEI	HÖRE	
Stahl V-	Führungen	50
Profile i	mit V-Führungen	52
Zahnsta	angen	53
	Anschlagleisten	54
Ritzel		54
	Ritzellager	55
	Ritzenwellen für Atlanta-Getriebe	55
	Automatisches Schmiersystem	56
	Bremseneinrichtung	56
V erbind	ungswellen	57
	V-Rollen für Führung 35x16	58
Laufwa		59
 ,	Montagebolzen	64
	Bestelltabelle für Laufwagen mit Montagebolzen	66
	(* D. (*)	
	kappen für Profile	67
	rbinder für leichte und mittlere Profile	68
	Statyca, Valyda und Logyca Profile	70
_	ungsleisten	70
_	ungswinkel	71
	ocken und Nockenleisten für Positionsschalter	73
Gewinde	eplatten für leichte und mittlere Profile	74
Gewinde	eplatten für Trägerprofile	76
	tungscode	78
	anwendungen	79
	rtverzeichnis	R1

tecline by tecnocenter

ISO 14001 zertifiziert

tecline by tecnocenter

Materialspezifikationen

Trägerprofile

Die Trägerprofile der Produktlinie TECLINE bestehen aus stranggepressten Aluminiumprofilen, Legierung AlMgSi 0,5 in der Qualität F25, Rm 245 N/mm2, Toleranzen gemäß DIN 17615-3 und DIN 1748-4. Bei der Konstruktion der Profile wurde besonderer Wert auf geringstes Gewicht bei hoher Biegesteifigkeit gelegt. Durch die möglichen Fertigungslängen bis 12 m lassen sich leichte und trotzdem steife Konstruktionen realisieren, wie sie heute in der modernen Handhabung benötigt werden.

Für die Kugelumlaufportalachsen "PAS" werden die Profiloberflächen bearbeitet.

(*) Die Profile Valyda und Logyca sind nur in Längen < 9 m eloxiert lieferbar. Pratyca und Soyda können auf Anfrage eloxiert werden.

Hinweis: Auf Anfrage können wir Portalachsen mit Stoß liefern.

Schlittenplatten

Die Schlittenplatten werden aus hochwertigem Aluminium hergestellt. Die Zugfestigkeit beträgt Rm 290 N/ mm2, HB 77.

V-Führungen

Die V-Führungen werden aus kohlenstoffhaltigem Stahl mit Sonderverfahren gefertigt. Sowohl vergütete als auch gehärtete Führungen sind verfügbar.

Maximallänge ohne Stoß der vergüteten Führungen 55 x 25 mm: 6100 mm, 35 x 16 mm: 6000 mm. Laufbahnhärte der gehärteten Führungen: HRC 55 mind. – Rm > 950 N/mm – Ra 2.

Rollen-Laufwagen

Die Laufwagen für die V-Führungen bestehen aus vergütetem Aluminium-Druckguß Legierung Al Mg Si 5 in der Qualität F25, Zugfestigkeit Rm 310N/mm2, komplett mit Abstreifer, Rollen mit zweireihigem Schrägkugellager, lebensdauergeschmiert. Die Laufwagen sind mit schwimmender oder fester Lagerung mit Rollen Ø40mm, Ø52mm und Ø62mm verfügbar.

Kugelumlaufführungen

Eine Kugelumlaufführung ermöglicht eine lineare Bewegung mit Hilfe von Kugeln. Durch zwischen Schiene und Laufwagen umlaufende Kugeln kann eine Kugelumlaufführung hochpräzise lineare Bewegungen ausführen. Kugelumlaufführungen können Kräfte in alle Richtungen aufnehmen.

Zahnstangen

Die Zahnstangen bestehend aus hochwertigem gezogenen Stahl und sind verfügbar in drei Ausführungen: 25x25, 30x30 und 40x40mm. Als Standard liefern wir:

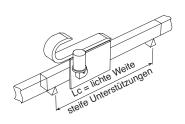
- auf Portalachsen "PA": induktiv gehärtete gerade verzahnte Zahnstangen und Ritzel aus C45 mit gehärteter Verzahnung.
- auf Portalachsen "PAS": induktiv gehärtete schräg verzahnte Zahnstangen und Ritzel aus hochlegiertem Stahl, einsatzgehärtete Verzahnung, schräg verzahnt .

Um eine bessere Gleichmäßigkeit der Bewegung zu gewährleisten, empfehlen wir die Montage von geschliffenen oder/und schräg verzahnten Ritzel und Zahnstagen.

Energieführungskette

Energieketten mit dem jeweils angegebenen Innenquerschnitt sind ebenso standardmäßig im Leistungsumfang enthalten, wie die Ablegerinne in der Horizontalachse. Energieeinspeisung am Trägerende.

Produktbezeichnungen

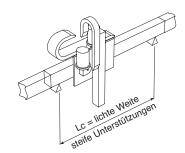


3-Achsen-Raumportale

Die unten stehenden Auswahltabellen ermöglichen eine grobe Vorauswahl der Achsen bei zentrisch angesetzter Traglast an der Z-Achse. Momente sowie Beschleunigungs-, Brems- und externe Kräfte sind **nicht** berücksichtigt. Eine Länge der Z-Achse < 1600 mm ist berücksichtigt.

Bitte wählen Sie anhand dieser Tabelle die geeignete X-Achsen-Kombination.

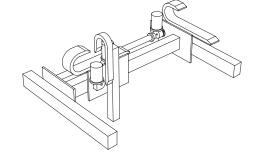
		PA	2X	ЗХ	4X	5X	6X	8X	10X	Lc
					Bieg	jung [mm	i]			
	50		1,4							5000
Nenntraglast	100		1,8							5000
g	200		2,7	1,8						5000
¥	300			2,3	2,7					5000
en	400				3,3	2,4				5000
Ž	500					2,8	1,8			5000
	600						2	2		6000
	800							2,5	1,8	6000
	1000								2,1	7000


N.B. Für PA8X und PA10X, bei vertikalem Einsatz unter Nenntraglast empfehlen wir den Einsatz eines Ausgleichs-Zylinders.

Y-Z-ACHSEN

X-ACHSE

Bitte wählen Sie anhand dieser Tabelle die geeignete Y-Z-Achsen-Kombination.


		PA	2/1	3/1	4/1	5/2	6/2	8/3	6/4	8/6	10/6	10/8	Lc
							Bie	gung	[mm]				
st	50		1,9										5000
ntraglast	100		2,4	1,7	2	1,6							5000
rag	200					2,2	0,8	0,8					5000
٦	300						1,6	1,6	1,6				6000
Nenr	400								1,9	2	0,9		6000
_	500									2,2	1		6000
	600									2,5	1,2	1,2	6000
	800											2,2	7000

Bitte wählen Sie nun anhand der ermittelten Y-Z-Achsen-Kombination die geeigneten X-Achsen.

					Y-	Z Achs	en					
		PA	2/1	3/1	4/1	5/2	6/2	8/3	6/4	8/6	10/6	10/8
	PA	Traglast [kg.]	100	100	100	200	200	300	400	600	600	700
4)	2X											
X-Achse	ЗХ											
Acl	4X											
×	5X											
	6X											
	8X											
	10X											

N.B. Die Auswahl der X-Achsen entspricht der effektiven Traglast, Max. Biegung und Gesamtgewicht der Y-Z-Achsen.

Beispiel: 3-Achsen System mit Rollenführung

(Kennzeichnen für die angegebenen Angaben, siehe Seiten 7 und für Portalachsen)

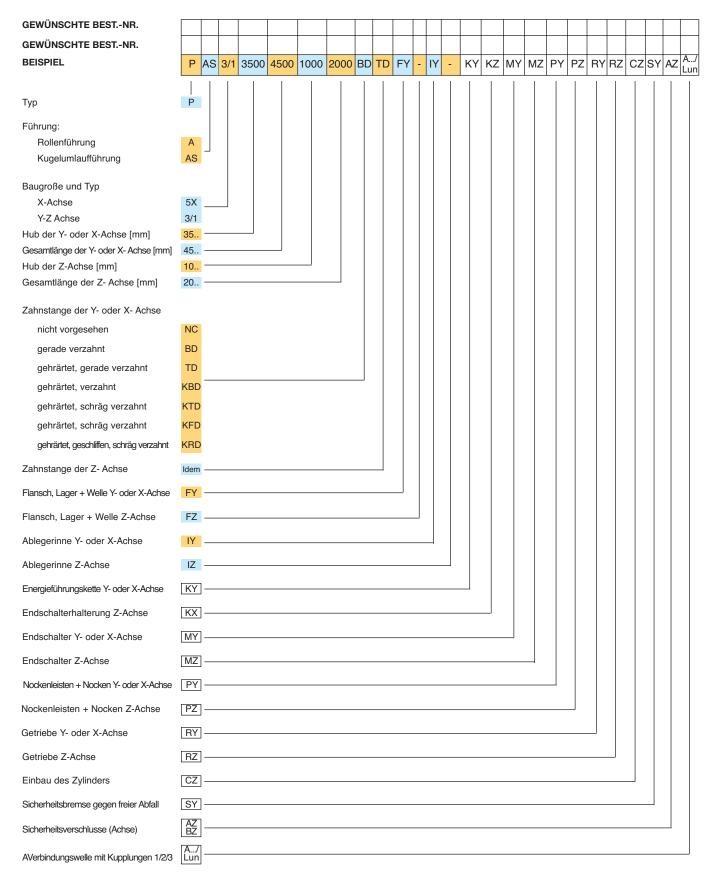
ANGABEN: Nutzlast Pc 300 kg., Hub der X-Achse: 5000 mm, Hub der Y-Achse: 4000 mm, Hub der Z-Achse: 2000 mm, Unterstützungspunkte: 2

Die Y-Z-Achsen Tabelle gemäß der Nutzlast (Pc), Profillänge (Ly) und Biegung untersuchen. Nr. 1 Portalachse PA8/3 (Nenntraglast 300 kg.) auswählen.

Nachprüfung: $PC = P_{max}$ -(Lz - 1600)/1000 m4 = 300-(2900-1600)/1000 35 = 254,5 kg. < von 300 kg. Die höhere Größe PA6/4 (Nenntraglast 400 kg.) auswählen.

 $m_{\text{des}} PA6/4 \text{ (Y+Z)} = m1 + (m3 \cdot \text{Hub}_{\text{V}} + m4 \cdot \text{Hub}_{\text{Z}})/1000 + Pc = 244 + (66 \cdot 4000 + 48 \cdot 2000)/1000 + 300 = 904 \text{ kg}.$

 $P_{tx} = m_{qes} PA6/4 (Y+Z) \cdot 0,66 = 596,6 \text{ kg}.$

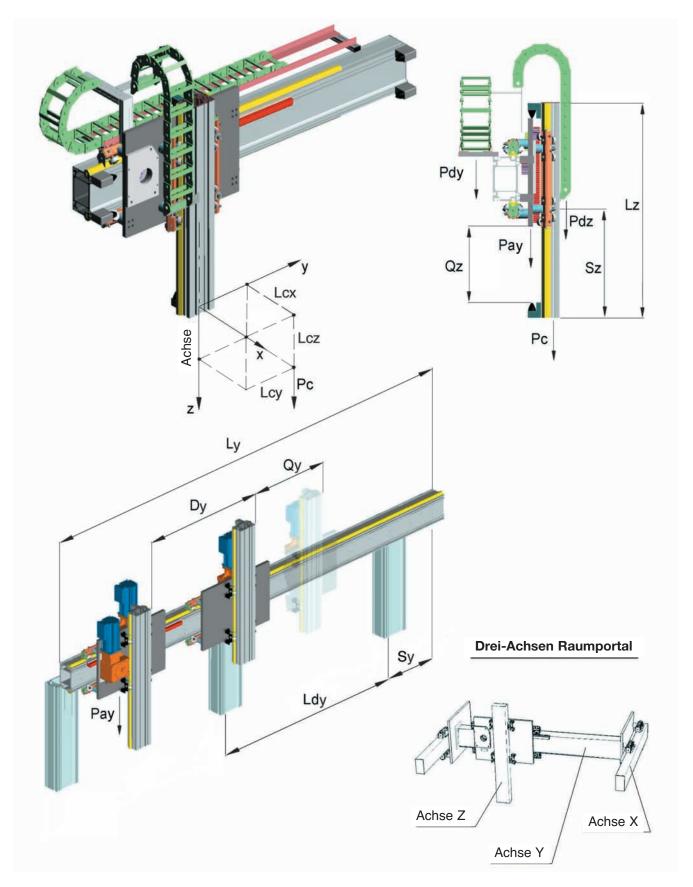

 $Lx = Hub_x + 1200 \text{ ca.} = 5000 + 1200 = 6200 \text{ mm}$

Die X-Achsen Tabelle gemäß der Last (Ptx), Profillänge (Lx) und Biegung untersuchen. Nr. 2 Portalachsen PA6X auswählen.

Ausgewählte Kombination: Nr. 1 PA 6/4 + Nr. 2 PA 6X

Wir schagen Ihnen vor, eine definitive Nachprüfung der Biegungen auszuführen.

Unser Planungsbüro steht zur Verfügung, um Ihnen die passendsten Lösungen für Ihre Erfordernisse vorzuschlagen.

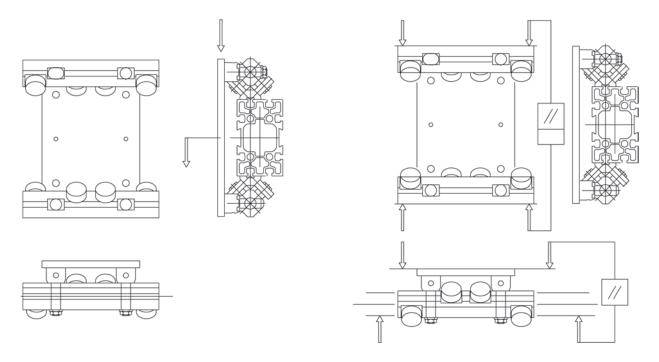

[•] Die Standard-Portalachsen sind mit allen in den Zeichnungen abgebildeten Komponenten ausgerüstet (Profile, Schlittenplatte, Laufwagen, V-Führungen, ahnstangen und Anschlagleisten, Getriebe-Adapterflansch, Ablegerinne, Endanschläge), außer Energieführungsketten. • Die Montage von ntersetzungsgetrieben, Getriebemotoren, Ausgleichszylinder usw. werden gegen Aufpreis ausgeführt. • Die Schlittenplatten können nach Ihren Zeichnungen bearbeitet werden.

[·] Wir erarbeiten mit Ihnen die individuelle Lösung Ihrer speziellen Aufgabenstellung bis hin zum mehrachsigen Linearroboter.

Hochwertige Kugelumlaufführung (als Alternative von Laufrollenführung).

Tabelle für die Dimensionierung

Der technische Kundendienst steht zur Überprüfung jeder Dimensionsberechnung zur Verfügung. Wenn Sie die Auslegungstabelle ausfüllen und abschicken, ist der technische Kundendienst in der Lage, die passendste Größe vorzuschlagen.


Auslegungstabelle

Zur Dimensionierung der Portalachse füllen Sie bitte diese Auslegungstabelle aus und schicken sie an den technischen Kundendienst. Datum: Anfrage Nr.: Ausgefüllt von: Tel.: Fax: TABELLE FÜR DIE DIMENSIONIERUNG MONTAGELÖSUNGEN (siehe Seite 2) Nr..... Achse7 **AchseY** AchseX Lx [mm] Gesamtlänge des Trägers Lz Ly Nettobelastung mit Greifer (für die Y und X- Achsen. Z addieren) Pc Ру Px [kg] Pax Zusätzliche Gewichte am Schlitten (Untersetzungsgetriebe, Zylinder, OPTIONAL) Pay [kg] Auf den Träger verteiltes Gewicht (z.B. Energieführung u. Kabel) Pdz Pdy Pdx [kg/m] n° Unterstützungspunkte des Trägers n° Max Ueberhangmass (evtl. das längste) Sy Sx Sz [mm] Größte lichte Weite Ldy Ldx [mm] Abstand LCX (Lastschwerpunkt angelegt) Lcx [mm] Abstand LCY (Lastschwerpunkt angelegt) Lcv [mm] Abstand LCZ (Lastschwerpunkt angelegt) [mm] Lcz Eventuelle zusätliche Kraft F [N] Achsabstand zwischen den Laufwagen Dy Dx [mm] Wirkunsgrad η Zusammenbau: senkrecht=90°; geneigt=30°, 45°, 60°; waagrecht=0° α° Hub Qx [mm] Qz Qy Geschwindigkeit ٧z ۷y Vx [m/s] Beschleunigung Az Ax $[m/s^2]$ Ay Zeit der einzigen Hub Тz Τx Tν [s] Wiederholgenauigkeit +/-[mm] Umweltbedingungen (Temperatur und Reinigungsgrad) Anzahl der taglichen Arbeitszyklen Anzahl N° **Arbeitszyklus** Beispiel für einen Arbeitszyklus v [m/s] v [m/s] 0 t [s]

Montagevorschriften

A - Merkmale der Laufrollenführung

Auf einer Schlittenplatte sind je Seite zwei Laufwagen mit je 2 bzw. 3 Linearlaufrollen befestigt. Mittels exzentrischem Montagebolzen kann auf einer Schlittenseite das Spiel zwischen Führung und Laufrollen eingestellt werden. Werksseitig werden die Laufrollen so vorgespannt, dass sie die max. Arbeitslast rutschfrei übertragen können.

B - Ausrichtung

Die Laufpunkte müssen perfekt ausgerichtet werden.

C - Montage der Zahnstangen

Zwischen der Zahnstangenachse und dem Führungssystem ist eng tolerierte Parallelität notwendig.

D - Montage und Verstellung von Laufwagen

Prüfen Sie die Laufrollenausrichtung.

Nach der Überprüfung der Fluchtung und einem evtl. Setzen der Laufwagen auf den Laufbahnen, beseitigen eventuelles Spiel durch die Verstellung der exzentrischen Montagebolzen, damit die Schlittenplatten frei laufen können.

Achtung: Eine Vorspannung ist sehr leicht eingestellt. Bitte beachten Sie, dass eine zu starke Vorspannung zu vorzeitigem Verschleiß führen kann.

Hinweis: Die Laufeigenschaften über die gesamte Führungslänge prüfen, ggf den Einstellvorgang wiederholen.

E - Befestigungsbedingungen

Bitte beachten Sie unsere Befestigungsvorschläge in der Betriebsanleitung.

F - Motorsystem

Auf Wunsch liefern wir das für Ihre Anwendung geeignete Motorsystem, komplett montiert. Die Regler sind lose beigelegt.

Schmierung

Rollen und Laufwagen

Für die Laufwagen wurde ein Schmiersystem auf Lebensdauer vorgesehen, deshalb sind bei korrektem Gebrauch des Systems unter Berücksichtigung der mittleren Lebensdauer von Bewegungsanlagen keine Wartungseingriffe nötig.

Es wird empfohlen, keine Lösungsmittel für die Reinigung der Rollen und Laufwagen zu verwenden, weil versehentlich der Fettfilm, der beim Zusammenbau auf die beweglichen Teile aufgebracht wurde, entfernt werden könnte.

Wir verwenden lithiumverseiftes Wälzlagerfett nach DIN 51825 - K3N.

Ritzel und Zahnstange

Diese Teile sind einer regelmäßigen Schmierung mit geeignetem Zahnradfett zu unterziehen.

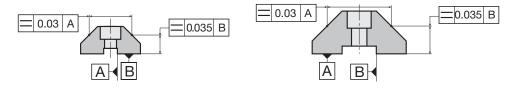
Führungen

Bei korrektem Zusammenbau müssen die Führungen nicht geschmiert werden. Anomalien auf der Oberfläche der Führung oder der Laufrollen deuten auf eine Überlastung des Führungssystems hin.

Kugelumlaufführungen

Durch den Einsatz einer Kugelkette in den Laufwagen wird das Berühren der Kugeln untereinander verhindert. Die Taschen zwischen den einzelnen Kugeln bilden ein Schmierstoffreservat zur permanenten Fettabgabe während der Bewegungsabläufe. Dadurch ist während der mittleren Lebensdauer keine Schmierung erforderlich.

Genauigkeit


Die Genauigkeit des Systems stützt sich auf die Toleranzen von:

- 1. Führungen
- 2. Laufelementen
- 3. Antriebssystem (z.B. Ritzel und Zahnstange)

V-Führungen

Die V-Führungen werden aus kohlenstoffhaltigem Stahl mit Sonderverfahren gefertigt. Sie sind vergütet oder mit gehärteten Laufbahnen lieferbar. Die Formgenauigkeit entnehmen Sie bitte den untenstehenden Abbildungen.

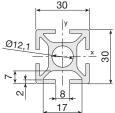
Härte: gehärtet mind. 55 HRC vergütet: 260HB

Laufrollen

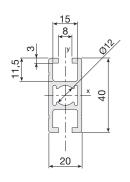
Die Laufrollen sind aus 100 Cr6 mit einer Härte min. 60 HRC hergestellt.

Die zweireihigen, beidseitig mit Dichtringen versehenen Schrägkugellager gewährleisten eine niedrige Reibzahl (ca. 0,03).

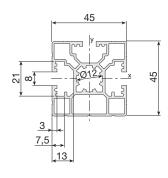

Die Toleranzen der Rollen stimmen mit DIN620 Teil 2 und 3 überein, dagegen stimmen die Lastfaktoren mit DIN ISO 281 und DIN ISO 76 überein.


Kugelumlaufführungen

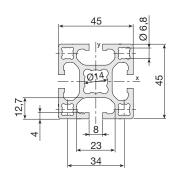
Die Genauigkeit der Kugelumlaufführung wurde entsprechend den allgemeinen Anforderungen an kugelumlaufgeführte Linearmodule gewählt.



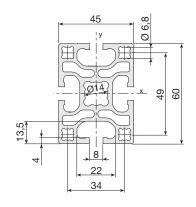
Leichte Profile

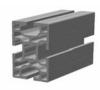


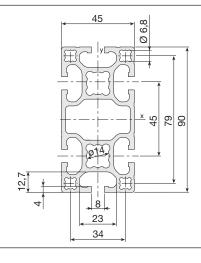
MB 1-1 (30x30)		
Gewicht	ca.1,2	Kg/m
Höchstlänge	6	m
Trägheitsmoment IX	39.000	mm⁴
Trägheitsmoment IY	39.000	mm⁴

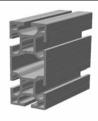


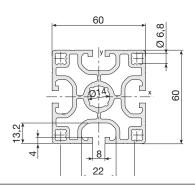
E01-7 (20x45)		
Gewicht	ca.1,2	Kg/m
Höchstlänge	6	m
Trägheitsmoment IX	22.000	mm⁴
Trägheitsmoment IY	64.000	mm⁴



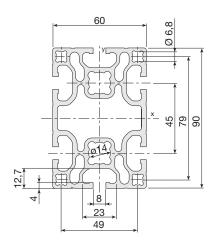

E01-6 (45x45)		
Gewicht	ca.1,4	Kg/m
Höchstlänge	6	m
Trägheitsmoment IX	137.000	mm⁴
Trägheitsmoment IY	138.000	mm⁴

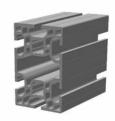



E 01-1 (45x45)		
Gewicht	ca. 2	Kg/m
Höchstlänge	6	m
Trägheitsmoment IX	155.000	mm⁴
Trägheitsmoment IY	155.000	mm ⁴

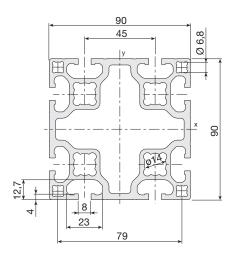


E 01-2 (45x60)		
Gewicht	ca. 2,7	Kg/m
Höchstlänge	6	m
Trägheitsmoment IX	340.000	mm ⁴
Trägheitsmoment IY	208.000	mm ⁴

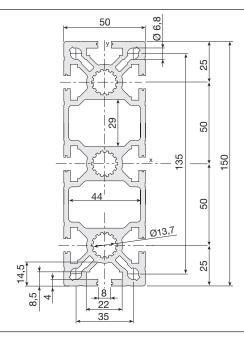



E 01-3 (45x90)		
Gewicht	ca. 3,5	Kg/m
Höchstlänge	6	m
Trägheitsmoment IX	1.055.000	mm⁴
Trägheitsmoment IY	284.000	mm⁴

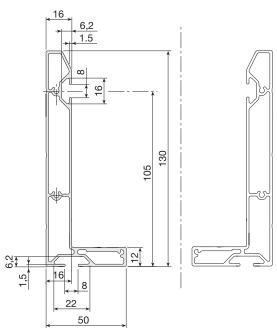
F 01-1 (60x60)		
Gewicht	ca. 3,6	Kg/m
Höchstlänge	6	m
Trägheitsmoment IX	466.600	mm⁴
Trägheitsmoment IY	466.600	mm⁴



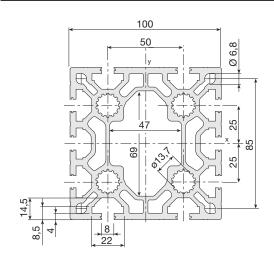
F 01-2 (60x90)		
Gewicht	ca. 4,6	Kg/m
Höchstlänge	6	m
Trägheitsmoment IX	1.450.500	mm ⁴
Trägheitsmoment IY	641.600	mm ⁴

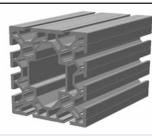


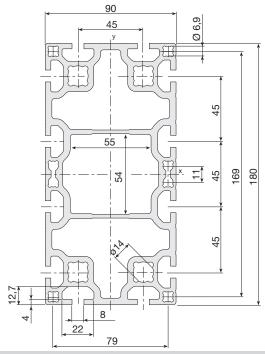
Profile mittlerer Größe

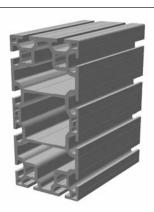


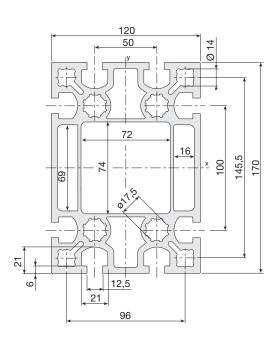
E 01-4 (90x90)		
Gewicht	ca. 6	Kg/m
Höchstlänge	6	m
Trägheitsmoment IX	2.027.000	mm⁴
Trägheitsmoment IY	2.027.000	mm⁴
Torsionsmoment	1.100.000	mm⁴
Widerstandsmoment (Wx)	45.040	mm³
Widerstandsmoment (Wy)	45.040	mm ³

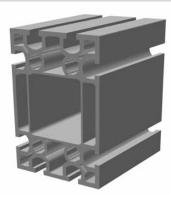

MA 1-3 (50x150)		
Gewicht	ca. 7,1	Kg/m
Höchstlänge	6	m
Trägheitsmoment IX	6.083.100	mm ⁴
Trägheitsmoment IY	735.600	mm⁴
Torsionsmoment	-	mm⁴
Widerstandsmoment (Wx)	81.110	mm³
Widerstandsmoment (Wy)	29.420	mm³

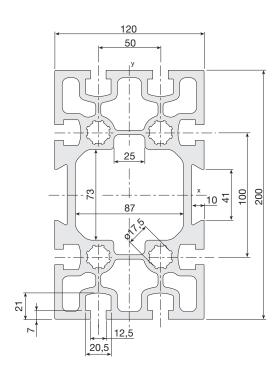


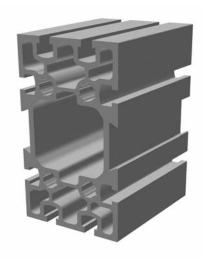

"L"-Profil	BestNr. 20	BestNr. 202.0001	
Gewicht	ca. 6	Kg/m	
Höchstlänge	6	m	
Trägheitsmoment IX	125.000	mm⁴	
Trägheitsmoment IY	1.230.000	mm⁴	
Widerstandsmoment (Wx)	1.890	mm³	
Widerstandsmoment (Wy)	490	mm³	
Geeignet für Ablegerinne			

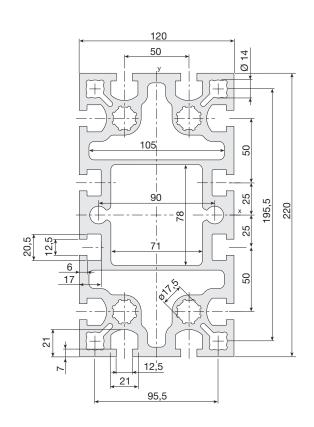

tecline by tecnocenter

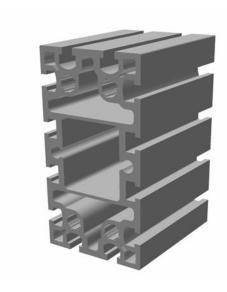

MA 1-5 (100x100)		
Gewicht	ca. 9,5	Kg/m
Höchstlänge	6	m
Trägheitsmoment IX	3.800.000	mm ⁴
Trägheitsmoment IY	3.650.000	mm ⁴
Torsionsmoment	1.900.000	mm ⁴
Widerstandsmoment (Wx)	76.000	mm³
Widerstandsmoment (Wy)	73.000	mm³

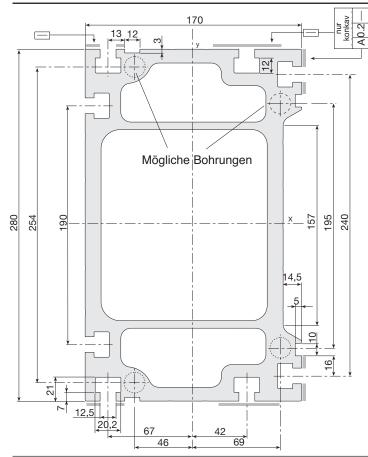


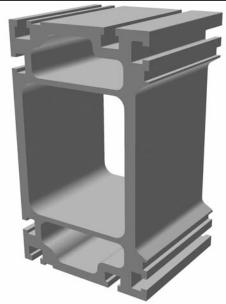

E 01-5 (90x180)		
Gewicht	ca. 12	Kg/m
Höchstlänge	8	m
Trägheitsmoment IX	15.180.000	mm⁴
Trägheitsmoment IY	4.420.000	mm ⁴
Torsionsmoment	4.400.000	mm ⁴
Widerstandsmoment (Wx)	168.670	mm³
Widerstandsmoment (Wy)	98.220	mm³

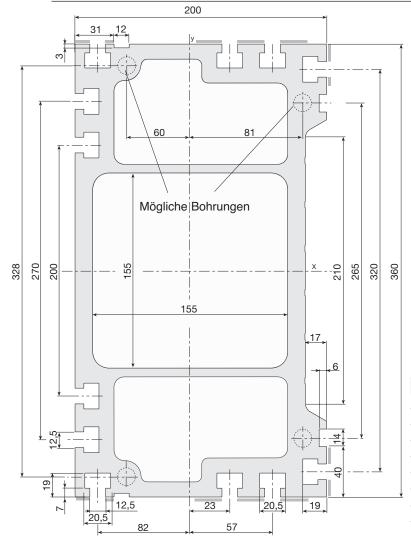

Trägerprofile

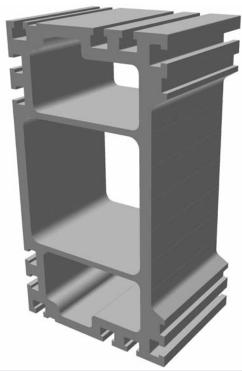

STATYCA (170x120)	BestNr. 202.1753		
Gewicht	ca. 17	Kg/m	
Höchstlänge	6	m	
Trägheitsmoment IX	20.360.000	mm⁴	
Trägheitsmoment IY	10.200.000	mm⁴	
Torsionsmoment	8.460.000	mm⁴	
Widerstandsmoment (Wx)	239.500	mm³	
Widerstandsmoment (Wy)	170.000	mm ³	

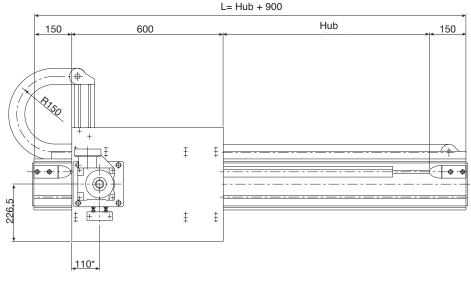


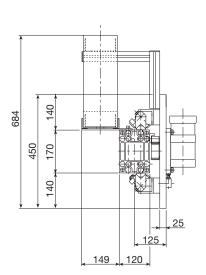

VALYDA (200x120)	BestNr. 202.1146		
Gewicht	ca. 21	Kg/m	
Höchstlänge	12	m	
Trägheitsmoment IX	32.980.000	mm⁴	
Trägheitsmoment IY	12.980.000	mm⁴	
Torsionsmoment	10.500.000	mm⁴	
Widerstandsmoment (Wx)	329.800	mm³	
Widerstandsmoment (Wy)	215.130	mm³	
Eloxiert nur in Längen ≤	9	[m]	

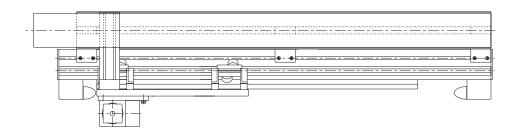

Auf Anfrage können Keileinsätze geliefert werden.

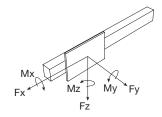



LOGYCA (220x120)	BestNr. 202.	2184
Gewicht	ca. 25	Kg/m
Höchstlänge	12	m
Trägheitsmoment IX	46.550.000	mm⁴
Trägheitsmoment IY	15.650.000	mm⁴
Torsionsmoment	14.300.000	mm⁴
Widerstandsmoment (Wx)	423.182	mm³
Widerstandsmoment (Wy)	260.833	mm³
Eloxiert nur in Längen ≤	9	[m]

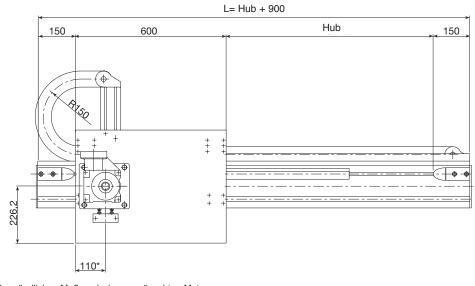

PRATYCA (280x170)	BestNr. 202	BestNr. 202.1147	
Gewicht	ca. 40	Kg/m	
Höchstlänge	12	m	
Trägheitsmoment IX	134.103.000	mm ⁴	
Trägheitsmoment IY	50.288.000	mm⁴	
Torsionsmoment	72.700.000	mm⁴	
Widerstandsmoment (Wx)	957.790	mm³	
Widerstandsmoment (Wy)	591.620	mm³	
Normalerweise nicht eloxiert			

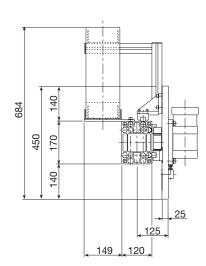



SOLYDA (360x200)	BestNr. 202.0342	
Gewicht	ca. 60	Kg/m
Höchstlänge	12	m
Trägheitsmoment IX	318.687.200	mm ⁴
Trägheitsmoment IY	105.533.000	mm⁴
Torsionsmoment	150.000.000	mm⁴
Widerstandsmoment (Wx)	1.770.500	mm³
Widerstandsmoment (Wy)	1.035.300	mm³
Normalerweise nicht eloxiert	·	

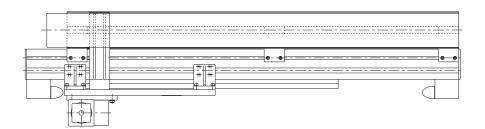

tecline by tecnocenter

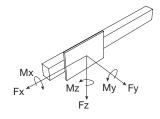
^{*} verändliches Maß nach dem gewünschten Motor


Leistungen	Achse X	
Max. Traglast		
bei zentrischer Anordnung	200	[Kg]
Max. Geschwindigkeit	3,5	[m/s]
Max. Beschleunigung	10	[m/s ²]
Wiederholgenauigkeit	± 0,3	[mm]
Max. Profillänge ohne Stoß	6000	[mm]


Max. Belastungen und Momente						
Typ $M_x[Nm]$ $M_y[Nm]$ $M_z[Nm]$ $F_x[N]$ $F_y[N]$ $F_z[N]$					$F_z[N]$	
PA 2X	560	1350	1350	4980	7000	7050

Technische Daten	Achse X	
Trägerprofil (siehe Seiten 13/15)	Statyca	
Zahnstange (gehärtet, gerade verzahnt)	30x30 Modul 3	[mm²]
V-Führungsschiene	35x16 (gehärtet und poliert)	
	4 Laufwagen mit 2 Rollen Ø40	
Energieführungskette-Innenquerschnitt	115x45	[mm²]
Ritzeldurchmesser (Induktionsgehärtet) 63,66		[mm]

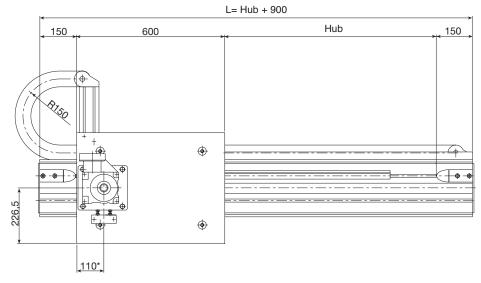

Gewichte	Achse X	
Basis ohne Hub	m ₁ = ca. 59	[Kg]
Schlitten (Schlittenplatte + Laufwagen)	m ₂ = ca. 29	[Kg]
Trägerprofil (inkl. Führungen und Zahnstange)	$m_3 = ca. 31$	[Kg/m]

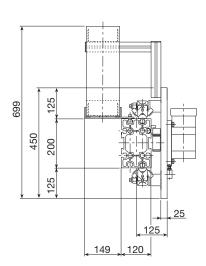

Formel:

^{*} verändliches Maß nach dem gewünschten Motor

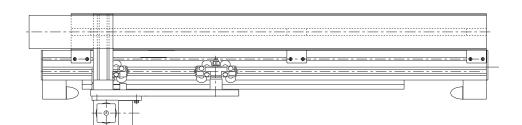
Leistungen	Achse X	
Max. Traglast		
bei zentrischer Anordnung	200	[Kg]
Max. Geschwindigkeit	3,5	[m/s]
Max. Beschleunigung	10	[m/s ²]
Wiederholgenauigkeit	± 0,1	[mm]
Max. Profillänge ohne Stoß	6000	[mm]

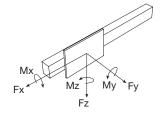
Max. Belastungen und Momente						
Тур	$M_x[Nm]$	$M_y[Nm]$	$M_z[Nm]$	$F_x[N]$	$F_y[N]$	$F_z[N]$
PAS 2X	1170	3450	3450	4980	16950	16950


Die angegebene Wiederholgenauigkeit kann mit geschliffenen Zahnstangen und Ritzeln mit hoher Verzahnungsqualität (auf Anfrage verfügbar) erreicht werden.

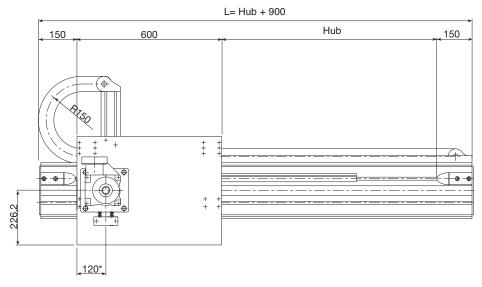

Technische Daten	Achse X	
Trägerprofil (siehe Seiten 13/15)	Statyca	
Zahnstange (gehärtet, schräg verzahnt)	29x30 Modul 3	[mm²]
	4 Führungsschlitten Größe 20	
Energieführungskette-Innenquerschnitt	115x45	[mm²]
Ritzeldurchmesser (Induktionsgehärtet)	63,66	[mm]

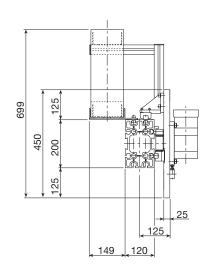
Gewichte	Achse X	
Basis ohne Hub	m ₁ = ca. 57	[Kg]
Schlitten (Schlittenplatte + Laufwagen)	m ₂ = ca. 29	[Kg]
Trägerprofil (inkl. Führungen und Zahnstange)	m ₃ = ca. 29	[Kg/m]


Formel:

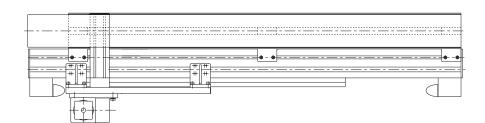


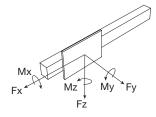
^{*} verändliches Maß nach dem gewünschten Motor


Leistungen	Achse X	
Max. Traglast bei zentrischer Anordnung	300	[Kg]
Max. Geschwindigkeit	3	[m/s]
Max. Beschleunigung	7	[m/s ²]
Wiederholgenauigkeit	± 0,3	[mm]
Max Profillänge ohne Stoß	12000	[mm]


Max. Belastungen und Momente						
Тур	$M_x[Nm]$	$M_y[Nm]$	$M_z[Nm]$	$F_x[N]$	$F_y[N]$	$F_z[N]$
PA 3X	1115	2685	2685	6128	14100	14100

Technische Daten	Achse X	
Trägerprofil (siehe Seiten 13/15)	Valyda	
Zahnstange (gehärtet, gerade verzahnt)	30x30 Modul 3	[mm²]
V-Führungsschiene	35x16 (gehärtet und poliert)	
	4 Laufwagen mit 4 Rollen Ø40	
Energieführungskette-Innenquerschnitt	115x45	[mm²]
Ritzeldurchmesser (Induktionsgehärtet)	63,66	[mm]

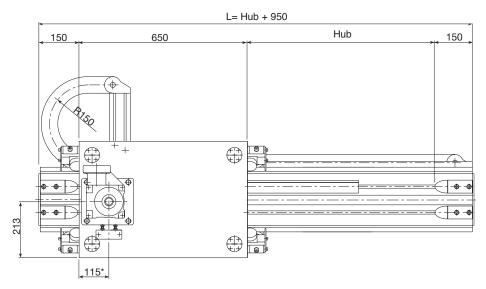

Gewichte	Achse X	
Basis ohne Hub	m ₁ = ca. 70	[Kg]
Schlitten (Schlittenplatte + Laufwagen)	m ₂ = ca. 36	[Kg]
Trägerprofil (inkl. Führungen und Zahnstange)	m ₃ = ca. 35	[Kg/m]

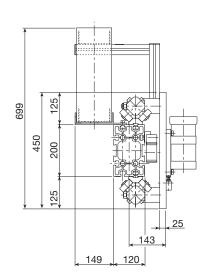

Formel:

^{*} verändliches Maß nach dem gewünschten Motor

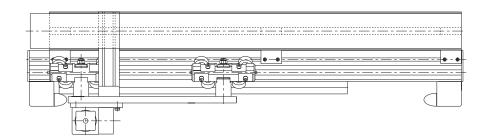
Leistungen	Achse X	
Max. Traglast		
bei zentrischer Anordnung	300	[Kg]
Max. Geschwindigkeit	3	[m/s]
Max. Beschleunigung	7	[m/s ²]
Wiederholgenauigkeit	± 0,1	[mm]
Max. Profillänge ohne Stoß	12000	[mm]

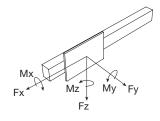
Max. Belastungen und Momente						
Тур	$M_x[Nm]$	$M_y[Nm]$	$M_z[Nm]$	$F_x[N]$	$F_y[N]$	$F_z[N]$
PAS 3X	1280	3500	3500	6128	16950	16950


Die angegebene Wiederholgenauigkeit kann mit geschliffenen Zahnstangen und Ritzeln mit hoher Verzahnungsqualität (auf Anfrage verfügbar) erreicht werden.


Technische Daten	Achse X	
Trägerprofil (siehe Seiten 13/15)	Valyda	
Zahnstange (gehärtet, schräg verzahnt)	29x30 Modul 3	[mm²]
	4 Führungsschlitten Größe 20	
Energieführungskette-Innenquerschnitt	115x45	[mm²]
Ritzeldurchmesser (Induktionsgehärtet)	63,66	[mm]

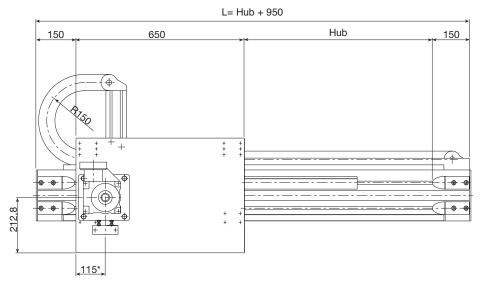
Gewichte	Achse X	
Basis ohne Hub	$m_1 = ca. 68$	[Kg]
Schlitten (Schlittenplatte + Laufwagen)	m ₂ = ca. 36	[Kg]
Trägerprofil (inkl. Führungen und Zahnstange)	m ₃ = ca. 33	[Kg/m]

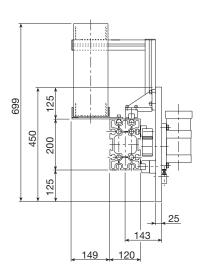

Formel:



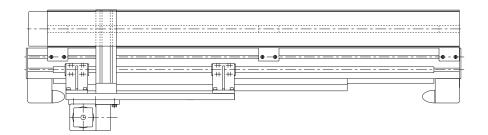
^{*} verändliches Maß nach dem gewünschten Motor

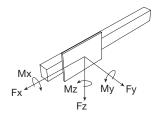
Leistungen	Achse X	
Max. Traglast bei zentrischer Anordnung	400	[Kg]
Max. Geschwindigkeit	3	[m/s]
Max. Beschleunigung	7	[m/s ²]
Wiederholgenauigkeit	± 0,3	[mm]
Max. Profillänge ohne Stoß	12000	[mm]


Max. Belastungen und Momente						
Тур	$M_x[Nm]$	$M_y[Nm]$	$M_z[Nm]$	$F_x[N]$	$F_y[N]$	$F_z[N]$
PA 4X	2200	5350	5380	8440	23925	23925


Technische Daten	Achse X	
Trägerprofil (siehe Seiten 13/15)	Valyda	
Zahnstange (gehärtet, gerade verzahnt)	40x40 Modul 4	[mm²]
V-Führungsschiene	55x25 (gehärtet und poliert)	
	4 Laufwagen mit 4 Rollen Ø52	
Energieführungskette-Innenquerschnitt	115x45	[mm²]
Ritzeldurchmesser (Induktionsgehärtet)	76,39	[mm]

Gewichte	Achse X	
Basis ohne Hub	$m_1 = ca. 96$	[Kg]
Schlitten (Schlittenplatte + Laufwagen)	m ₂ = ca. 48	[Kg]
Trägerprofil (inkl. Führungen und Zahnstange)	$m_3 = ca. 48$	[Kg/m]

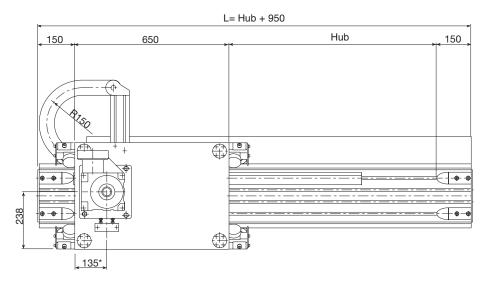

Formel:

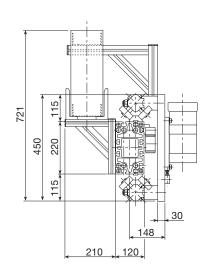


^{*} verändliches Maß nach dem gewünschten Motor

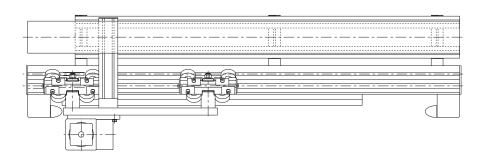
Leistungen	Achse X	
Max. Traglast		
bei zentrischer Anordnung	400	[Kg]
Max. Geschwindigkeit	3	[m/s]
Max. Beschleunigung	7	[m/s ²]
Wiederholgenauigkeit	± 0,1	[mm]
Max. Profillänge ohne Stoß	12000	[mm]

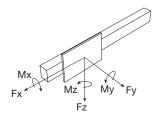
Max. Belastungen und Momente						
Тур	$M_x[Nm]$	$M_y[Nm]$	$M_z[Nm]$	$F_x[N]$	$F_y[N]$	$F_z[N]$
PAS 4X	1850	5200	5200	8265	24100	24100


Die angegebene Wiederholgenauigkeit kann mit geschliffenen Zahnstangen und Ritzeln mit hoher Verzahnungsqualität (auf Anfrage verfügbar) erreicht werden.


Technische Daten	Achse X	
Trägerprofil (siehe Seiten 13/15)	Valyda	
Zahnstange (gehärtet, schräg verzahnt)	39x40 Modul 4	[mm²]
	4 Führungsschlitten Größe 25	
Energieführungskette-Innenquerschnitt	115x45	[mm²]_
Ritzeldurchmesser (Induktionsgehärtet)	76,39	[mm]

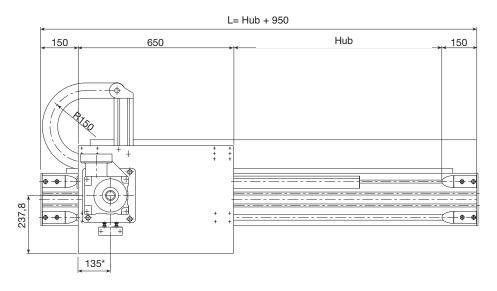
Gewichte	Achse X	
Basis ohne Hub	$m_1 = ca. 80$	[Kg]
Schlitten (Schlittenplatte + Laufwagen)	m ₂ = ca. 38	[Kg]
Trägerprofil (inkl. Führungen und Zahnstange)	m ₃ = ca. 40	[Kg/m]

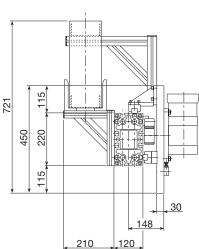

Formel:



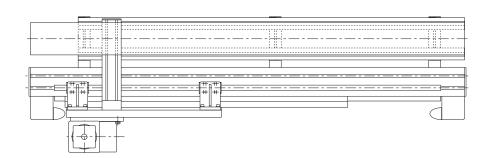
^{*} verändliches Maß nach dem gewünschten Motor

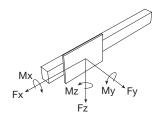
Leistungen	Achse X	
Max. Traglast bei zentrischer Anordnung	500	[Kg]
Max. Geschwindigkeit	3	[m/s]
Max. Beschleunigung	6	[m/s ²]
Wiederholgenauigkeit	± 0,3	[mm]
Max. Profillänge ohne Stoß	12000	[mm]


Max. Belastungen und Momente						
Тур	M _x [Nm]	$M_y[Nm]$	$M_z[Nm]$	$F_x[N]$	$F_y[N]$	$F_z[N]$
PA 5X	3000	6720	6720	9840	29900	29900


Technische Daten	Achse X	
Trägerprofil (siehe Seiten 13/15)	Logyca	
Zahnstange (gehärtet, gerade verzahnt)	40x40 Modul 4	[mm²]
V-Führungsschiene	55x25 (gehärtet und poliert)	
	4 Laufwagen mit 4 Rollen Ø62	
Energieführungskette-Innenquerschnitt	115x45	[mm²]
Ritzeldurchmesser (Induktionsgehärtet)	76,39	[mm]

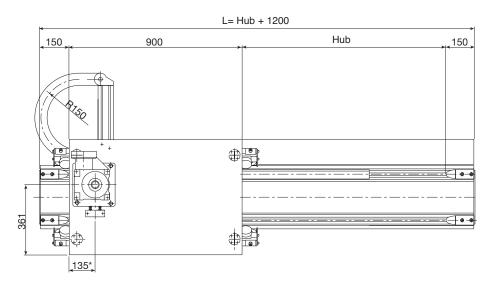
Gewichte	Achse X	
Basis ohne Hub	$m_1 = ca. 106$	[Kg]
Schlitten (Schlittenplatte + Laufwagen)	m ₂ = ca. 54	[Kg]
Trägerprofil (inkl. Führungen und Zahnstange)	m ₃ = ca. 52	[Kg/m]

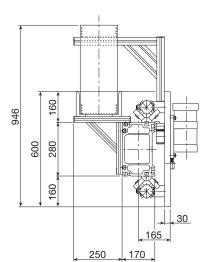

Formel:



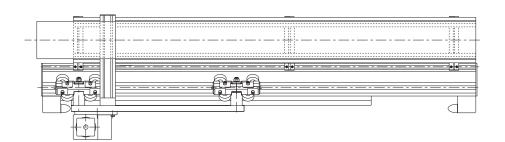
^{*} verändliches Maß nach dem gewünschten Motor

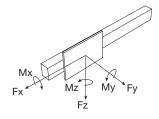
Leistungen	Achse X	
Max. Traglast		
bei zentrischer Anordnung	500	[Kg]
Max. Geschwindigkeit	3	[m/s]
Max. Beschleunigung	6	[m/s ²]
Wiederholgenauigkeit	± 0,1	[mm]
Max. Profillänge ohne Stoß	12000	[mm]


Max. Belastungen und Momente						
Тур	$M_x[Nm]$	$M_y[Nm]$	$M_z[Nm]$	$F_x[N]$	$F_y[N]$	$F_z[N]$
PAS 5X	2060	5200	5200	9680	24100	24100

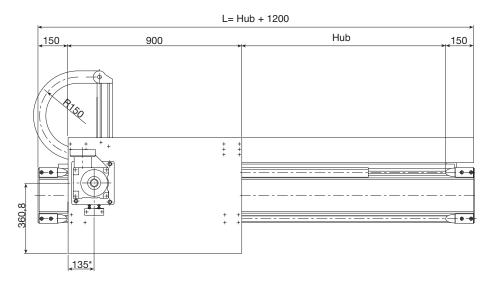

Die angegebene Wiederholgenauigkeit kann mit geschliffenen Zahnstangen und Ritzeln mit hoher Verzahnungsqualität (auf Anfrage verfügbar) erreicht werden.

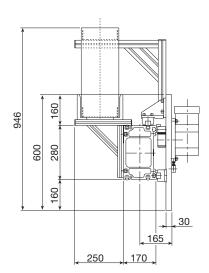
Technische Daten	Achse X	
Trägerprofil (siehe Seiten 13/15)	Logyca	
Zahnstange (gehärtet, schräg verzahnt)	39x40 Modul 4	[mm²]
	4 Führungsschlitten Größe 25	
Energieführungskette-Innenquerschnitt	115x45	[mm²]
Ritzeldurchmesser (Induktionsgehärtet)	76,39	[mm]


Gewichte	Achse X	
Basis ohne Hub	$m_1 = ca. 90$	[Kg]
Schlitten (Schlittenplatte + Laufwagen)	m ₂ = ca. 44	[Kg]
Trägerprofil (inkl. Führungen und Zahnstange)	m ₃ = ca. 44	[Kg/m]

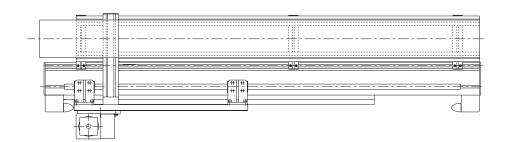

Formel:

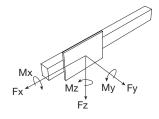
^{*} verändliches Maß nach dem gewünschten Motor


Leistungen	Achse X	
Max. Traglast		
bei zentrischer Anordnung	600	[Kg]
Max. Geschwindigkeit	3	[m/s]
Max. Beschleunigung	4	[m/s ²]
Wiederholgenauigkeit	± 0,3	[mm]
Max. Profillänge ohne Stoß	12000	[mm]


Max. Belastungen und Momente						
Тур	$M_x[Nm]$	$M_y[Nm]$	$M_z[Nm]$	F _x [N]	$F_y[N]$	$F_z[N]$
PA 6X	3700	8770	8770	10280	29900	29900

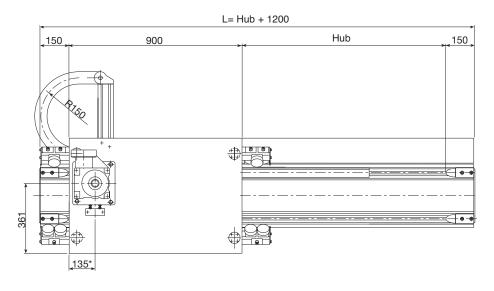
Technische Daten	Achse X	
Trägerprofil (siehe Seiten 13/15)	Pratyca	
Zahnstange (gehärtet, gerade verzahnt)	40x40 Modul 4	[mm²]
V-Führungsschiene	55x25 (gehärtet und poliert)	
	4 Laufwagen mit 4 Rollen Ø62	
Energieführungskette-Innenquerschnitt	175x45	[mm²]
Ritzeldurchmesser (Induktionsgehärtet)	76,39	[mm]

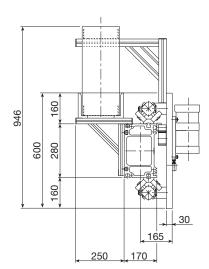

Gewichte	Achse X	
Basis ohne Hub	$m_1 = ca. 164$	[Kg]
Schlitten (Schlittenplatte + Laufwagen)	m ₂ = ca. 79	[Kg]
Trägerprofil (inkl. Führungen und Zahnstange)	$m_3 = ca. 66$	[Kg/m]


Formel:

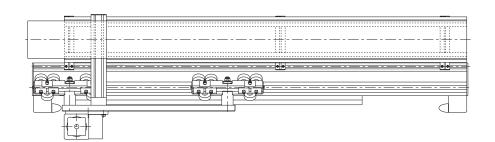
^{*} verändliches Maß nach dem gewünschten Motor

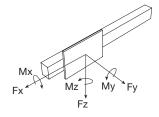
Leistungen	Achse X	
Max. Traglast		
bei zentrischer Anordnung	600	[Kg]
Max. Geschwindigkeit	3	[m/s]
Max. Beschleunigung	5	[m/s ²]
Wiederholgenauigkeit	± 0,1	[mm]
Max. Profillänge ohne Stoß	12000	[mm]


Max. Belastungen und Momente						
Тур	M _x [Nm]	$M_y[Nm]$	$M_z[Nm]$	$F_x[N]$	$F_y[N]$	$F_z[N]$
PAS 6	〈 4160	6750	6750	10135	34050	34050


Die angegebene Wiederholgenauigkeit kann mit geschliffenen Zahnstangen und Ritzeln mit hoher Verzahnungsqualität (auf Anfrage verfügbar) erreicht werden.

Technische Daten	Achse X	
Trägerprofil (siehe Seiten 13/15)	Pratyca	
Zahnstange (gehärtet, schräg verzahnt)	39x40 Modul 4	[mm²]
	4 Führungsschlitten Größe 30	
Energieführungskette-Innenquerschnitt	175x45	[mm²]
Ritzeldurchmesser (Induktionsgehärtet) 76,39		[mm]

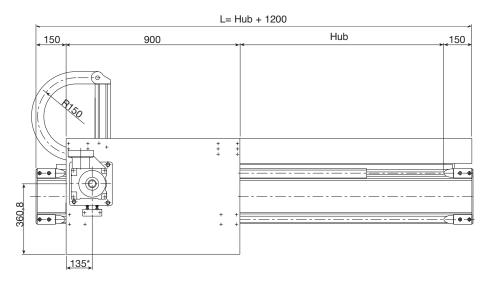

Gewichte	Achse X	
Basis ohne Hub	$m_1 = ca. 149$	[Kg]
Schlitten (Schlittenplatte + Laufwagen)	$m_2 = ca. 69$	[Kg]
Trägerprofil (inkl. Führungen und Zahnstange)	$m_3 = ca. 60$	[Kg/m]

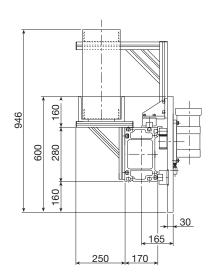

Formel:

^{*} verändliches Maß nach dem gewünschten Motor

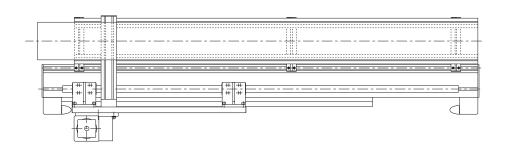
Leistungen	Achse X	
Max. Traglast		
bei zentrischer Anordnung	800**	[Kg]
Max. Geschwindigkeit	2,5	[m/s]
Max. Beschleunigung	2	[m/s ²]
Wiederholgenauigkeit	± 0,3	[mm]
Max. Profillänge ohne Stoß	12000	[mm]

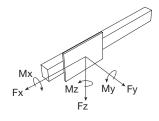
^{**} Bei vertikalem Einsatz unter Nenntraglast empfehlen wir den Einsatz eines Ausgleichs-Zylinders.


Max. Belastungen und Momente						
Тур	$M_x[Nm]$	$M_y[Nm]$	$M_z[Nm]$	F _x [N]	$F_y[N]$	$F_z[N]$
PA 8X	5550	8800	13160	10280	44800	29900


Die angegebene Werte beziehen sich auf die günstigere Anordnung der Laufwagen mit 6 Rollen.

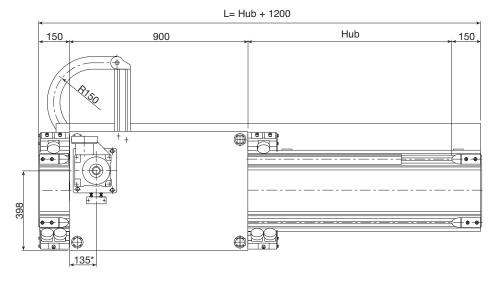
Technische Daten	Achse X	
Trägerprofil (siehe Seiten 13/15)	Pratyca	
Zahnstange (gehärtet, gerade verzahnt)	40x40 Modul 4	[mm²]
V-Führungsschiene	55x25 (gehärtet und poliert)	
	4 Laufwagen mit 6 Rollen Ø62	
Energieführungskette-Innenquerschnitt	175x45	[mm²]
Ritzeldurchmesser (Induktionsgehärtet)	76,39	[mm]

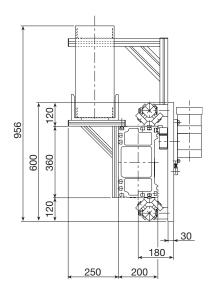

Gewichte	Achse X	
Basis ohne Hub	$m_1 = ca. 173$	[Kg]
Schlitten (Schlittenplatte + Laufwagen)	m ₂ = ca. 88	[Kg]
Trägerprofil (inkl. Führungen und Zahnstange)	$m_3 = ca. 66$	[Kg/m]


Formel:

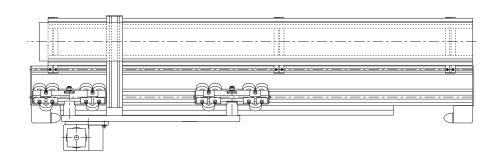
^{*} verändliches Maß nach dem gewünschten Motor

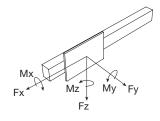
Leistungen	Achse X	
Max. Traglast		
bei zentrischer Anordnung	800	[Kg]
Max. Geschwindigkeit	2,5	[m/s]
Max. Beschleunigung	2	[m/s ²]
Wiederholgenauigkeit	± 0,1	[mm]
Max. Profillänge ohne Stoß	12000	[mm]


Max. Belastungen und Momente						
Тур	$M_x[Nm]$	$M_y[Nm]$	$M_z[Nm]$	$F_x[N]$	$F_y[N]$	$F_z[N]$
PAS 8X	5840	13100	13100	11420	47350	47350


Die angegebene Wiederholgenauigkeit kann mit geschliffenen Zahnstangen und Ritzeln mit hoher Verzahnungsqualität (auf Anfrage verfügbar) erreicht werden.

Technische Daten	Achse X	
Trägerprofil (siehe Seiten 13/15)	Pratyca	
Zahnstange (gehärtet, schräg verzahnt)	39x40 Modul 4	[mm²]
	4 Führungsschlitten Größe 35	
Energieführungskette-Innenquerschnitt	175x45	[mm²]
Ritzeldurchmesser (Induktionsgehärtet) 76,39		[mm]

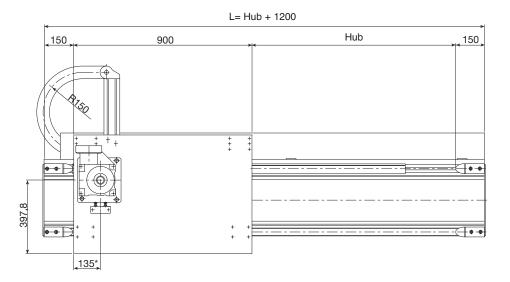

Gewichte	Achse X	
Basis ohne Hub	$m_1 = ca. 159$	[Kg]
Schlitten (Schlittenplatte + Laufwagen)	m ₂ = ca. 76	[Kg]
Trägerprofil (inkl. Führungen und Zahnstange)	m ₃ = ca. 64	[Kg/m]

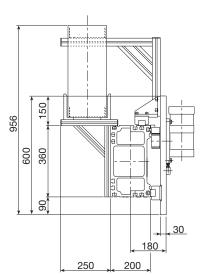

Formel:

^{*} verändliches Maß nach dem gewünschten Motor

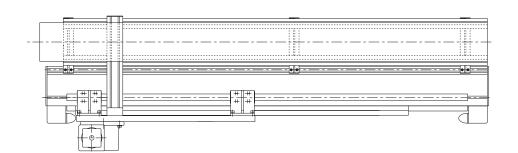
Leistungen	Achse X	
Max. Traglast		
bei zentrischer Anordnung	1000**	[Kg]
Max. Geschwindigkeit	2,5	[m/s]
Max. Beschleunigung	2	[m/s ²]
Wiederholgenauigkeit	± 0,4	[mm]
Max. Profillänge ohne Stoß	12000	[mm]

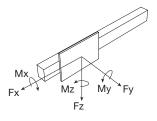
^{**} Bei vertikalem Einsatz unter Nenntraglast empfehlen wir den Einsatz eines Ausgleichs-Zylinders.


Max. Belastungen und Momente						
Тур	$M_x[Nm]$	M _y [Nm]	$M_z[Nm]$	$F_x[N]$	$F_y[N]$	$F_z[N]$
PA 10X	6900	8800	13160	10280	44860	29900


Die angegebene Werte beziehen sich auf die günstigere Anordnung der Laufwagen mit 6 Rollen.

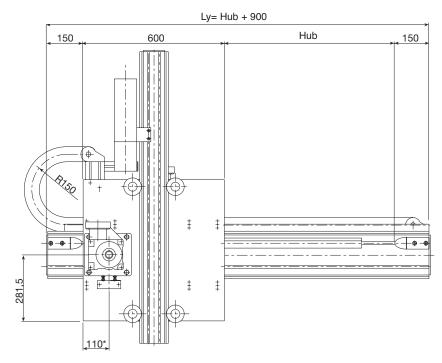
Technische Daten	Achse X	
Trägerprofil (siehe Seiten 13/15)	Solyda	
Zahnstange (gehärtet, gerade verzahnt)	40x40 Modul 4	[mm²]
V-Führungsschiene	55x25 (gehärtet und poliert)	
	4 Laufwagen mit 6 Rollen Ø62	
Energieführungskette-Innenquerschnitt	175x45	[mm²]
Ritzeldurchmesser (Induktionsgehärtet)	76,39	[mm]

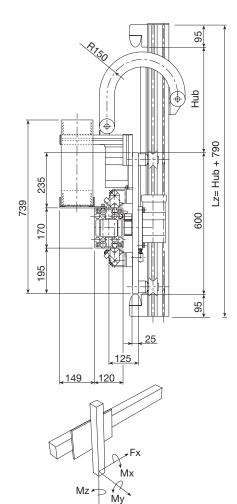

Gewichte	Achse X	
Basis ohne Hub	$m_1 = ca. 196$	[Kg]
Schlitten (Schlittenplatte + Laufwagen)	m ₂ = ca. 88	[Kg]
Trägerprofil (inkl. Führungen und Zahnstange)	$m_3 = ca. 85$	[Kg/m]


Formel:

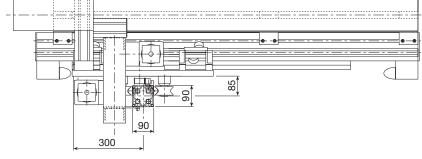
^{*} verändliches Maß nach dem gewünschten Motor

Leistungen	Achse X	
Max. Traglast bei zentrischer Anordnung	1000	[Kg]
Max. Geschwindigkeit	2,5	[m/s]
Max. Beschleunigung	3	[m/s ²]
Wiederholgenauigkeit	± 0,1	[mm]
Max. Profillänge ohne Stoß	12000	[mm]


Max. Belastungen und Momente						
Тур	M _x [Nm]	$M_y[Nm]$	$M_z[Nm]$	F _x [N]	$F_y[N]$	F _z [N]
PAS 10	X 7240	13100	13100	13850	47350	47350


Die angegebene Wiederholgenauigkeit kann mit geschliffenen Zahnstangen und Ritzeln mit hoher Verzahnungsqualität (auf Anfrage verfügbar) erreicht werden

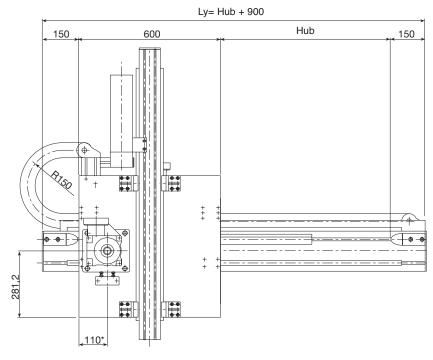
Technische Daten	Achse X	
Trägerprofil (siehe Seiten 13/15)	Solyda	
Zahnstange (gehärtet, schräg verzahnt)	39x40 Modul 5	[mm²]
	4 Führungsschlitten Größe 35	
Energieführungskette-Innenquerschnitt	175x45	[mm²]
Ritzeldurchmesser (Induktionsgehärtet)	76,39	[mm]

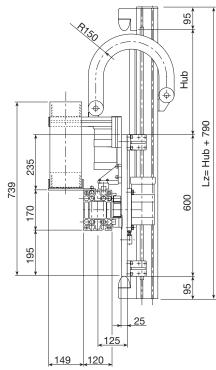

Gewichte	Achse X	
Basis ohne Hub	$m_1 = ca. 182$	[Kg]
Schlitten (Schlittenplatte + Laufwagen)	$m_2 = ca. 76$	[Kg]
Trägerprofil (inkl. Führungen und Zahnstange)	m ₃ = ca. 83	[Kg/m]

Formel:

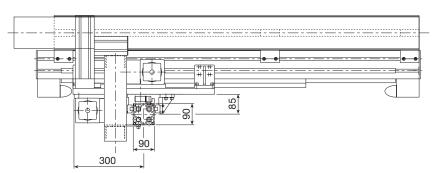
* verändliches Maß nach dem gewünschten Motor

Max. Belastungen und Momente					
Typ $M_x[Nm]$ $M_v[Nm]$ $M_z[Nm]$ $F_x[N]$ $F_z[N]$					F _z [N]
PA 2/1	956	1340	300	3200	2310


Leistungen	Achse Y	Achse	e Z
Max. Traglast (Pc _{max}) bei zen Anordnung (Lz ≤ 1600 mm)	trischer		
Max. Geschwindigkeit	3,5	3,5	[m/s]
Max. Beschleunigung	10	7	[m/s ²]
Wiederholgenauigkeit	-	± 0,3	[mm]
Max. Profillänge ohne Stoß	6000	6000	[mm]


Technische Daten	Achse Y	Achse Z	
Trägerprofil (siehe Seiten 13/15)	Statyca	E01-4	
Zahnstange (gehärtet, gerade verzahnt)	30x30 Modul 3	25x25 Modul 2	[mm ²]
V-Führungsschiene	35x16 (gehärtet und poliert)	35x16 (gehärtet und poliert)	
	4 Laufwagen mit 2 Rollen Ø40	4 V-Rollen Ø75	
Energieführungskette-Innenquerschnitt	115x45	75x45	[mm²]
Ritzeldurchmesser (Induktionsgehärtet)	63,66	44,56	[mm]

Gewichte	Achse Y	Achse Z	
Basis ohne Hub		m ₁ = ca. 92	[Kg]
Schlitten (Schlittenplatte + Laufwagen)		m ₂ = ca. 44	[Kg]
Trägerprofil (inkl. Führungen und Zahnstange)	m ₃ = ca. 31	$m_4 = ca. 20$	[Kg/m]


Formeln:

Effektivtraglast: $Pc = Pc_{max}$ -(Lz - 1600)/1000• m_4

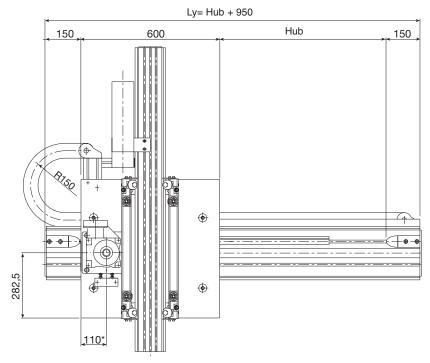
* verändliches Maß nach dem gewünschten Motor

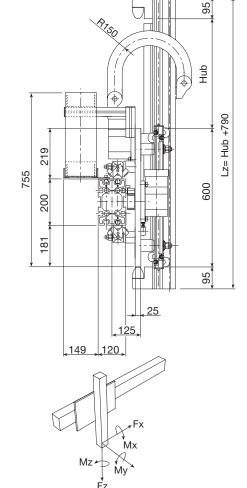
Mz	Fx Mx My Fz
	_

Leistungen	Achse Y	Achse	Z
Max. Traglast (Pc _{max}) bei zent Anordnung (Lz ≤ 1600 mm)	rischer		
Max. Geschwindigkeit	3,5	3,5	[m/s]
Max. Beschleunigung	10	7	[m/s ²]
Wiederholgenauigkeit	-	± 0,1	[mm]
Max. Profillänge ohne Stoß	6000	6000	[mm]

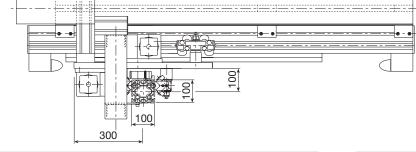
Max. Belastungen und Momente						
Typ $M_x[Nm]$ $M_y[Nm]$ $M_z[Nm]$ $F_x[N]$ $F_z[N]$						
PAS 2/1	1170	1440	320	3185	2200	

Die angegebenen dynamischen Werte berücksichtigen bereits Sicherheitsfaktoren, wie sie für Maschinen in der Automatisierungstechnik üblich sind. Die genannten Werte sind jeder als Höchstleistung einzelner Daten zu betrachten. Bei gleichzeitigen max. Belastungen, wenden Sie sich an unsere technische Kundendienst.


Die angegebene Wiederholgenauigkeit kann mit geschliffenen Zahnstangen und Ritzeln mit hoher Verzahnungsqualität (auf Anfrage verfügbar) erreicht werden


Technische Daten	Achse Y	Achse Z	
Trägerprofil (siehe Seiten 13/15)	Statyca	E01-4	
Zahnstange (gehärtet, schräg verzahnt)	29x30 Modul 3	24x25 Modul 2	[mm ²]
	4 Führungsschlitten Größe 20	4 Führungsschlitten Größe 15	
Energieführungskette-Innenquerschnitt	115x45	75x45	[mm ²]
Ritzeldurchmesser (Induktionsgehärtet)	63,66	44,56	[mm]

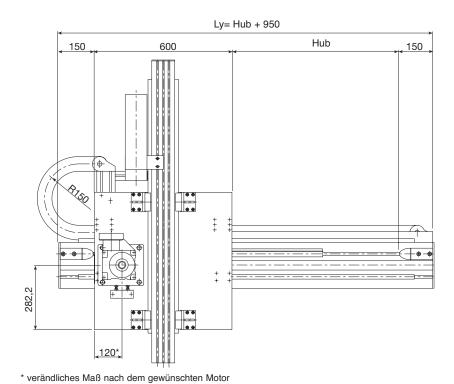
Gewichte	Achse Y	Achse Z	
Basis ohne Hub		$m_1 = ca. 87$	[Kg]
Schlitten (Schlittenplatte + Laufwagen)		m ₂ = ca. 43	[Kg]
Trägerprofil (inkl. Führungen und Zahnstange)	$m_3 = ca. 29$	m ₄ = ca. 16	[Kg/m]

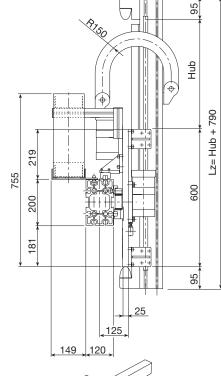

Formeln:

Effektivtraglast: $Pc = Pc_{max}$ -(Lz - 1600)/1000• m_4

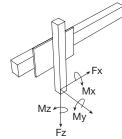
* verändliches Maß nach dem gewünschten Motor

Max. Belastungen und Momente						
Тур		M _x [Nm]	M _y [Nm]	M _z [Nm] F _x [N]	$F_z[N]$
PA 3	3/1	1115	1520	352	3205	2405
Die	ana	eaebenen	dvnamischen	Werte	berücksichtigen	bereits


Leistungen	Achse Y	Achs	e Z
Max. Traglast (Pc max) bei zen Anordnung (Lz ≤ 1600 mm)	trischer		
Max. Geschwindigkeit	3	3	[m/s]
Max. Beschleunigung	7	7	[m/s ²]
Wiederholgenauigkeit	-	± 0,3	[mm]
Max. Profillänge ohne Stoß	12000	6000	[mm]


Technische Daten	Achse Y	Achse Z	
Trägerprofil (siehe Seiten 13/15)	Valyda	MA1-5	
Zahnstange (gehärtet, gerade verzahnt)	30x30 Modul 3	30x30 Modul 3	[mm ²]
V-Führungsschiene	35x16 (gehärtet und poliert)	35x16 (gehärtet und poliert)	
	4 Laufwagen mit 3 Rollen Ø40	2 Laufwagen mit 4 Rollen Ø40)
Energieführungskette-Innenquerschnitt	115x45	75x45	[mm ²]
Ritzeldurchmesser (Induktionsgehärtet)	63,66	63,66	[mm]

Gewichte	Achse Y	Achse Z	
Basis ohne Hub		$m_1 = ca. 111$	[Kg]
Schlitten (Schlittenplatte + Laufwagen)		m ₂ = ca. 54	[Kg]
Trägerprofil (inkl. Führungen und Zahnstange)	$m_3 = ca. 35$	$m_4 = ca. 24$	[Kg/m]


Formeln:

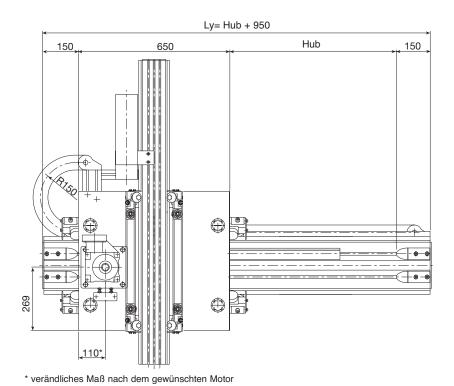
Effektivtraglast: $Pc = Pc_{max}$ -(Lz - 1600)/1000•m₄

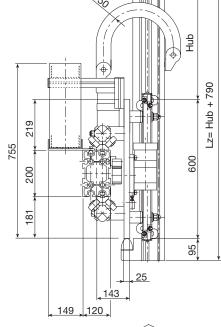
100

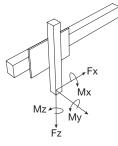
Leistungen	Achse Y	Achse	e Z
Max. Traglast (Pc _{max}) bei zentr Anordnung (Lz ≤ 1600 mm)	ischer		
Max. Geschwindigkeit	3	3	[m/s]
Max. Beschleunigung	7	7	[m/s ²]
Wiederholgenauigkeit	-	± 0,1	[mm]
Max. Profillänge ohne Stoß	12000	6000	[mm]

Max. Belastungen und Momente					
Typ $M_x[Nm]$ $M_y[Nm]$ $M_z[Nm]$ $F_x[N]$ $F_z[N]$					
PAS 3/1	1280	1890	485	3130	2320

dynamischen Werte berücksichtigen angegebenen Sicherheitsfaktoren, wie sie für Maschinen in der Automatisierungstechnik üblich sind. Die genannten Werte sind jeder als Höchstleistung einzelner Daten zu betrachten. Bei gleichzeitigen max. Belastungen, wenden Sie sich an unsere technische Kundendienst.
Die angegebene Wiederholgenauigkeit kann mit geschliffenen Zahnstangen und Ritzeln mit hoher Verzahnungsqualität (auf Anfrage verfügbar) erreicht


Technische Daten	Achse Y	Achse Z	
Trägerprofil (siehe Seiten 13/15)	Valyda	MA1-5	
Zahnstange (gehärtet, schräg verzahnt)	29x30 Modul 3	29x30 Modul 3	[mm ²]
	4 Führungsschlitten Größe 20	4 Führungsschlitten Größe 20	
Energieführungskette-Innenquerschnitt	115x45	75x45	[mm ²]
Ritzeldurchmesser (Induktionsgehärtet)	63,66	63,66	[mm]


Gewichte	Achse Y	Act	hse Z	
Basis ohne Hub		$m_1 = ca. 100$		[Kg]
Schlitten (Schlittenplatte + Laufwagen)		m ₂ = ca. 45		[Kg]
Trägerprofil (inkl. Führungen und Zahnstange)	$m_3 = ca. 33$	m ₄ :	= ca. 21	[Kg/m]


Formeln:

Effektivtraglast: $Pc = Pc_{max}$ -(Lz - 1600)/1000• m_4

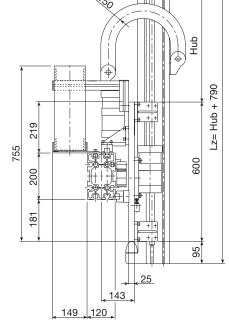
95

Leistungen	Achse Y	Achse	e Z
Max. Traglast (Pc $_{max}$) bei zent Anordnung (Lz \leq 1600 mm)	rischer		
Max. Geschwindigkeit	3	3	[m/s]
Max. Beschleunigung	7	7	[m/s ²]
Wiederholgenauigkeit	-	± 0,3	[mm]
Max. Profillänge ohne Stoß	12000	6000	[mm]

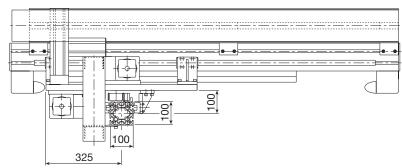
Max. Belastungen und Momente						
Typ $M_x[Nm]$ $M_y[Nm]$ $M_z[Nm]$ $F_x[N]$ $F_z[N]$						
PA 4/1	1520	1520	352	4250	2405	

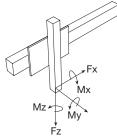
Die angegebenen dynamischen Werte berücksichtigen bereits Sicherheitsfaktoren, wie sie für Maschinen in der Automatisierungstechnik üblich sind. Die genannten Werte sind jeder als Höchstleistung einzelner Daten zu betrachten. Bei gleichzeitigen max. Belastungen, wenden Sie sich an unsere technische Kundendienst.

Technische Daten	Achse Y	Achse Z	
Trägerprofil (siehe Seiten 13/15)	Valyda	MA1-5	
Zahnstange (gehärtet, gerade verzahnt)	40x40 Modul 4	30x30 Modul 3	[mm ²]
V-Führungsschiene	55x25 (gehärtet und poliert)	35x16 (gehärtet und poliert)	
	4 Laufwagen mit 4 Rollen Ø52	4 Laufwagen mit 2 Rollen Ø40	
Energieführungskette-Innenquerschnitt	115x45	75x45	[mm ²]
Ritzeldurchmesser (Induktionsgehärtet)	76,39	63,66	[mm]


Gewichte	Achse Y	Achse Z	
Basis ohne Hub		$m_1 = ca. 140$	[Kg]
Schlitten (Schlittenplatte + Laufwagen)		m ₂ = ca. 69	[Kg]
Trägerprofil (inkl. Führungen und Zahnstange)	m ₃ = ca. 48	$m_4 = ca. 24$	[Kg/m]]

Formeln:

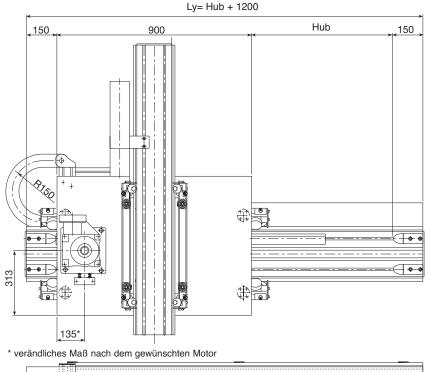

Effektivtraglast: $Pc = Pc_{max}$ -(Lz - 1600)/1000•m₄

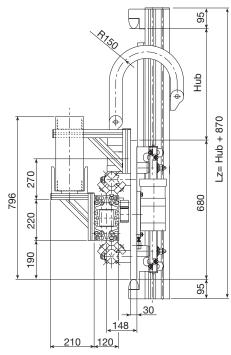

95

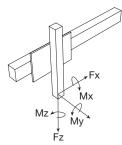
* verändliches Maß nach dem gewünschten Motor

Leistungen	Achse Y	Achse	e Z				
Max. Traglast (Pc max) bei zent	Max. Traglast (Pc max) bei zentrischer						
Anordnung (Lz ≤ 1600 mm)							
Max. Geschwindigkeit	3	3	[m/s]				
Max. Beschleunigung	7	7	[m/s ²]				
Wiederholgenauigkeit	-	± 0,1	[mm]				
Max. Profillänge ohne Stoß	12000	6000	[mm]				

Max. Belastungen und Momente					
Typ $M_x[Nm]$ $M_y[Nm]$ $M_z[Nm]$ $F_x[N]$ $F_z[N]$					
PAS 4/1	1700	1890	485	4130	2320


dynamischen Werte berücksichtigen angegebenen Sicherheitsfaktoren, wie sie für Maschinen in der Automatisierungstechnik üblich sind. Die genannten Werte sind jeder als Höchstleistung einzelner Daten zu betrachten. Bei gleichzeitigen max. Belastungen, wenden Sie sich an unsere technische Kundendienst.
Die angegebene Wiederholgenauigkeit kann mit geschliffenen Zahnstangen und Ritzeln mit hoher Verzahnungsqualität (auf Anfrage verfügbar) erreicht


Technische Daten	Achse Y	Achse Z	
Trägerprofil (siehe Seiten 13/15)	Valyda	MA1-5	
Zahnstange (gehärtet, schräg verzahnt)	39x40 Modul 4	29x30 Modul 3	[mm ²]
	4 Führungsschlitten Größe 25	4 Führungsschlitten Größe 20	
Energieführungskette-Innenquerschnitt	115x45	75x45	[mm ²]
Ritzeldurchmesser (Induktionsgehärtet)	76,39	63,66	[mm]

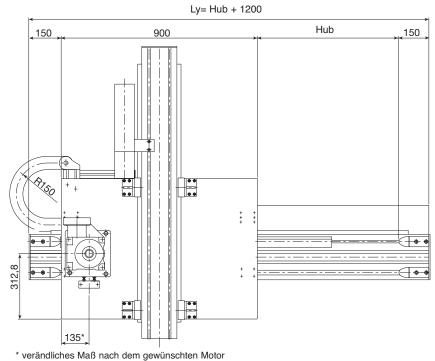

Gewichte	Achse Y		Achse Z	
Basis ohne Hub		m ₁ = ca. 121		[Kg]
Schlitten (Schlittenplatte + Laufwagen)		$m_2 = ca. 59$		[Kg]
Trägerprofil (inkl. Führungen und Zahnstange)	$m_3 = ca. 40$		$m_4 = ca. 21$	[Kg/m]

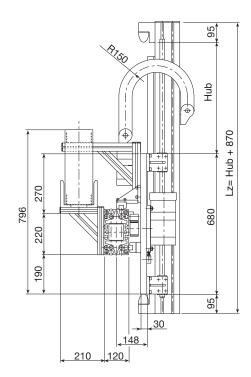
Formeln:

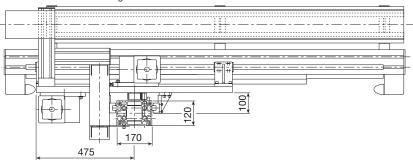
Effektivtraglast: $Pc = Pc_{max}$ -(Lz - 1600)/1000• m_4

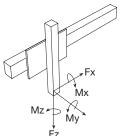
veralitationes man fracti defit gewartscritten motor	
170	

Leistungen	Achse Y	Achse	e Z
Max. Traglast (Pc_{max}) bei zen Anordnung ($Lz \le 1600 \text{ mm}$)	trischer		
Max. Geschwindigkeit	3	3	[m/s]
Max. Beschleunigung	6	4	[m/s ²]
Wiederholgenauigkeit	-	± 0,3	[mm]
Max. Profillänge ohne Stoß	12000	6000	[mm]


Max. Belastungen und Momente						
Тур	Typ $M_x[Nm]$ $M_y[Nm]$ $M_z[Nm]$ $F_x[N]$ $F_z[N]$					
PA 5/2	1520	1520	580	4670	3580	


Technische Daten	Achse Y	Achse Z	
Trägerprofil (siehe Seiten 13/15)	Logyca	Statyca	
Zahnstange (gehärtet, gerade verzahnt)	40x40 Modul 4	30x30 Modul 3	[mm ²]
V-Führungsschiene	55x25 (gehärtet und poliert)	35x16 (gehärtet und poliert)	
	4 Laufwagen mit 4 Rollen Ø62	2 Laufwagen mit 4 Rollen Ø40	
Energieführungskette-Innenquerschnitt	115x45	75x45	[mm ²]
Ritzeldurchmesser (Induktionsgehärtet)	76,39	63,66	[mm]


Gewichte	Achse Y	Achse	Z
Basis ohne Hub		$m_1 = ca. 195$	[Kg]
Schlitten (Schlittenplatte + Laufwagen)		m ₂ = ca. 98	[Kg]
Trägerprofil (inkl. Führungen und Zahnstange)	m ₃ = ca. 52	$m_4 = c$	a. 31 [Kg/m]

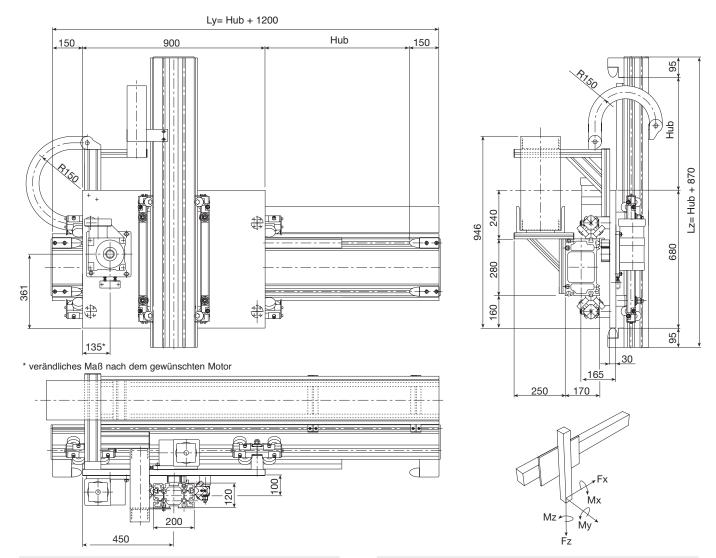

Formeln:

Effektivtraglast: $Pc = Pc_{max}$ -(Lz - 1600)/1000•m₄

Leistungen	Achse Y	Achse	e Z
Max. Traglast (Pc_{max}) bei zent Anordnung ($Lz \le 1600 \text{ mm}$)	rischer		
Max. Geschwindigkeit	3	3	[m/s]
Max. Beschleunigung	6	4	[m/s ²]
Wiederholgenauigkeit	-	± 0,1	[mm]
Max. Profillänge ohne Stoß	12000	6000	[mm]

Max. Belastungen und Momente					
Тур	$M_x[Nm]$	M _y [Nm]	$M_z[Nm]$	F _x [N]	$F_z[N]$
PAS 5/2	2060	3320	1210	4620	3545

dynamischen Werte berücksichtigen angegebenen Sicherheitsfaktoren, wie sie für Maschinen in der Automatisierungstechnik üblich sind. Die genannten Werte sind jeder als Höchstleistung einzelner Daten zu betrachten. Bei gleichzeitigen max. Belastungen, wenden Sie sich an unsere technische Kundendienst.
Die angegebene Wiederholgenauigkeit kann mit geschliffenen Zahnstangen und Ritzeln mit hoher Verzahnungsqualität (auf Anfrage verfügbar) erreicht


Technische Daten	Achse Y	Achse Z	
Trägerprofil (siehe Seiten 13/15)	Logyca	Statyca	
Zahnstange (gehärtet, schräg verzahnt)	39x40 Modul 4	29x30 Modul 3	[mm ²]
	4 Führungsschlitten Größe 25	4 Führungsschlitten Größe 25	
Energieführungskette-Innenquerschnitt	115x45	75x45	[mm ²]
Ritzeldurchmesser (Induktionsgehärtet)	76,39	63,66	[mm]

Gewichte	Achse Y	Achse Z	
Basis ohne Hub		$m_1 = ca. 178$	[Kg]
Schlitten (Schlittenplatte + Laufwagen)		m ₂ = ca. 95	[Kg]
Trägerprofil (inkl. Führungen und Zahnstange)	$m_3 = ca. 44$	$m_4 = ca. 29$	[Kg/m]

Formeln:

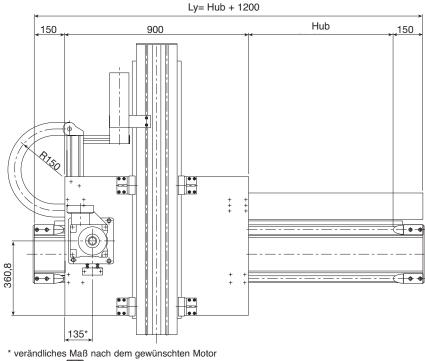
Effektivtraglast: $Pc = Pc_{max}$ -(Lz - 1600)/1000•m₄

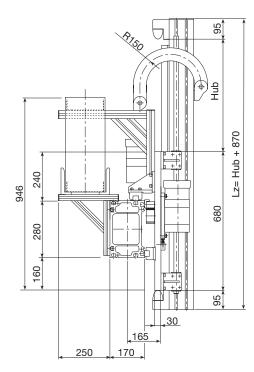
Portalgesamtgewicht: $m_{ges} = m_1 + (m_3 \cdot Hub_v + m_4 \cdot Hub_z)/1000$ (Hub_V und Hub_Z in mm.)

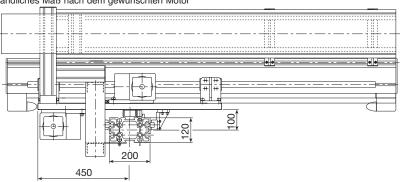
Leistungen	Achse Y	Achse	Z
Max. Traglast (Pc max) bei zent	rischer		
Anordnung (Lz ≤ 1600 mm)			
Max. Geschwindigkeit	3	3	[m/s]
Max. Beschleunigung	4	4	[m/s ²]
Wiederholgenauigkeit	-	± 0,3	[mm]
Max. Profillänge ohne Stoß	12000	12000	[mm]

Max. Belastungen und Momente					
Тур	M _x [Nm]	M _y [Nm]	$M_z[Nm]$	F _x [N]	$F_z[N]$
PA 6/2	1520	1520	670	3555	3665

Die angegebenen dynamischen Werte berücksichtigen bereits Sicherheitsfaktoren, wie sie für Maschinen in der Automatisierungstechnik üblich sind. Die genannten Werte sind jeder als Höchstleistung einzelner Daten zu betrachten. Bei gleichzeitigen max. Belastungen, wenden Sie sich an unsere technische Kundendienst.


Technische Daten	Achse Y	Achse Z	
Trägerprofil (siehe Seiten 13/15)	Pratyca	Valyda	
Zahnstange (gehärtet, gerade verzahnt)	40x40 Modul 4	30x30 Modul 3	[mm ²]
V-Führungsschiene	55x25 (gehärtet und poliert)	35x16 (gehärtet und poliert)	
	4 Laufwagen mit 4 Rollen Ø62	2 Laufwagen mit 4 Rollen Ø40	
Energieführungskette-Innenquerschnitt	175x45	75x45	[mm ²]
Ritzeldurchmesser (Induktionsgehärtet)	76,39	63,66	[mm]


Gewichte	Achse Y	Achse Z	
Basis ohne Hub		$m_1 = ca. 220$	[Kg]
Schlitten (Schlittenplatte + Laufwagen)		m ₂ = ca. 99	[Kg]
Trägerprofil (inkl. Führungen und Zahnstange)	m ₃ = ca. 66	$m_4 = ca. 3$	5 [Kg/m]


Formeln:

Effektivtraglast: $Pc = Pc_{max}$ -(Lz - 1600)/1000•m₄

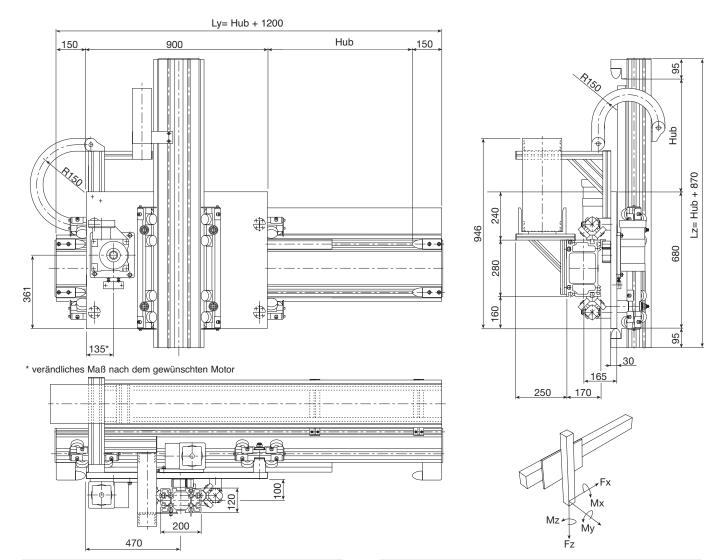
Portalgesamtgewicht: $m_{ges} = m_1 + (m_3 \cdot Hub_y + m_4 \cdot Hub_z)/1000$ (Hub_V und Hub_Z in mm.)

Fz Fx Mx My Fz

Leistungen	Achse Y	Achse	Z
Max. Traglast (Pc max) bei zentr Anordnung (Lz ≤ 1600 mm)	ischer		
Max. Geschwindigkeit	3	3	[m/s]
Max. Beschleunigung	4	4	[m/s ²]
Wiederholgenauigkeit	-	± 0,1	[mm]
Max. Profillänge ohne Stoß	12000	12000	[mm]

Max. Belastungen und Momente					
Тур	$M_x[Nm]$	$M_y[Nm]$	$M_z[Nm]$	F _x [N]	$F_z[N]$
PAS 6/2	3000	3310	1375	3585	3630

dynamischen Werte berücksichtigen angegebenen Sicherheitsfaktoren, wie sie für Maschinen in der Automatisierungstechnik üblich sind. Die genannten Werte sind jeder als Höchstleistung einzelner Daten zu betrachten. Bei gleichzeitigen max. Belastungen, wenden Sie sich an unsere technische Kundendienst.
Die angegebene Wiederholgenauigkeit kann mit geschliffenen Zahnstangen und Ritzeln mit hoher Verzahnungsqualität (auf Anfrage verfügbar) erreicht


Technische Daten	Achse Y	Achse Z	
Trägerprofil (siehe Seiten 13/15)	Pratyca	Valyda	
Zahnstange (gehärtet, schräg verzahnt)	39x40 Modul 4	29x30 Modul 3	[mm ²]
	4 Führungsschlitten Größe 30	4 Führungsschlitten Größe 25	
Energieführungskette-Innenquerschnitt	175x45	75x45	[mm ²]
Ritzeldurchmesser (Induktionsgehärtet)	76,39	63,66	[mm]

Gewichte	Achse Y		Achse Z	
Basis ohne Hub		$m_1 = ca. 202$		[Kg]
Schlitten (Schlittenplatte + Laufwagen)		m ₂ = ca. 86		[Kg]
Trägerprofil (inkl. Führungen und Zahnstange)	$m_3 = ca. 60$		$m_4 = ca. 34$	[Kg/m]

Formeln:

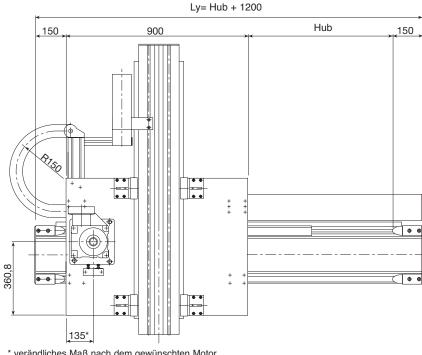
Effektivtraglast: $Pc = Pc_{max}$ -(Lz - 1600)/1000•m₄

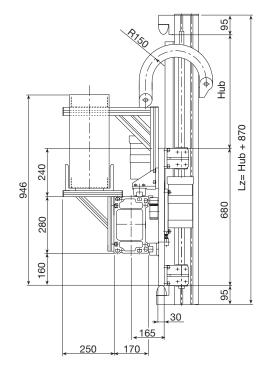
Portalgesamtgewicht: $m_{ges} = m_1 + (m_3 \cdot Hub_v + m_4 \cdot Hub_z)/1000$ (Hub_V und Hub_Z in mm.)

Leistungen	Achse Y	Achse	Z
Max. Traglast (Pc max) bei zent	rischer		
Anordnung (Lz ≤ 1600 mm)			
Max. Geschwindigkeit	3	2	[m/s]
Max. Beschleunigung	4	3	[m/s ²]
Wiederholgenauigkeit	-	± 0,3	[mm]
Max. Profillänge ohne Stoß	12000	12000	[mm]

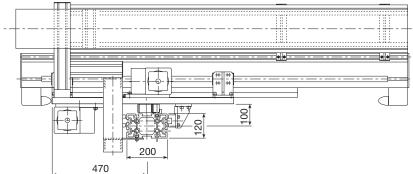
Max. Belastungen und Momente					
Тур	$M_x[Nm]$	$M_y[Nm]$	$M_z[Nm]$	$F_x[N]$	$F_z[N]$
PA 6/4	2435	2435	1200	3585	6345

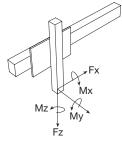
Die angegebenen dynamischen Werte berücksichtigen bereits Sicherheitsfaktoren, wie sie für Maschinen in der Automatisierungstechnik üblich sind. Die genannten Werte sind jeder als Höchstleistung einzelner Daten zu betrachten. Bei gleichzeitigen max. Belastungen, wenden Sie sich an unsere technische Kundendienst.


Technische Daten	Achse Y	Achse Z	
Trägerprofil (siehe Seiten 13/15)	Pratyca	Valyda	
Zahnstange (gehärtet, gerade verzahnt)	40x40 Modul 4	40x40 Modul 4	[mm ²]
V-Führungsschiene	55x25 (gehärtet und poliert)	55x25 (gehärtet und poliert)	
	4 Laufwagen mit 4 Rollen Ø62	2 Laufwagen mit 6 Rollen Ø52	<u> </u>
Energieführungskette-Innenquerschnitt	175x45	75x45	[mm ²]
Ritzeldurchmesser (Induktionsgehärtet)	76,39	76,39	[mm]


Gewichte	Achse Y		Achse Z	
Basis ohne Hub		$m_1 = ca. 244$		[Kg]
Schlitten (Schlittenplatte + Laufwagen)		$m_2 = ca. 112$		[Kg]
Trägerprofil (inkl. Führungen und Zahnstange)	m ₃ = ca. 66		m ₄ = ca. 48	[Kg/m]

Formeln:


Effektivtraglast: $Pc = Pc_{max}$ -(Lz - 1600)/1000•m₄

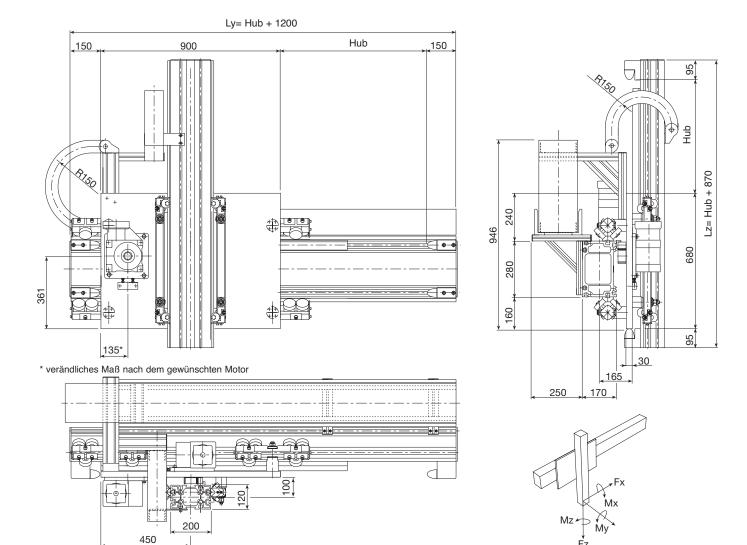

Portalgesamtgewicht: $m_{ges} = m_1 + (m_3 \cdot Hub_y + m_4 \cdot Hub_z)/1000$ (Hub_V und Hub_Z in mm.)

Leistungen	Achse Y	Achse	Z
Max. Traglast (Pc max) bei zentri Anordnung (Lz ≤ 1600 mm)	scher		
Max. Geschwindigkeit	3	2	[m/s]
Max. Beschleunigung	4	3	[m/s ²]
Wiederholgenauigkeit	-	± 0,1	[mm]
Max. Profillänge ohne Stoß	12000	12000	[mm]

Max. Belastungen und Momente					
Тур	$M_x[Nm]$	$M_y[Nm]$	$M_z[Nm]$	F _x [N]	$F_z[N]$
PAS 6/4	3000	3310	1375	3775	6150

angegebenen dynamischen Werte berücksichtigen Sicherheitsfaktoren, wie sie für Maschinen in der Automatisierungstechnik üblich sind. Die genannten Werte sind jeder als Höchstleistung einzelner Daten zu betrachten. Bei gleichzeitigen max. Belastungen, wenden Sie sich an unsere technische Kundendienst.

Die angegebene Wiederholgenauigkeit kann mit geschliffenen Zahnstangen und Ritzeln mit hoher Verzahnungsqualität (auf Änfrage verfügbar) erreicht


Technische Daten	Achse Y	Achse Z	
Trägerprofil (siehe Seiten 13/15)	Pratyca	Valyda	
Zahnstange (gehärtet, schräg verzahnt)	39x40 Modul 4	39x40 Modul 4	[mm ²]
	4 Führungsschlitten Größe 30	4 Führungsschlitten Größe 25	
Energieführungskette-Innenquerschnitt	175x45	75x45	[mm ²]
Ritzeldurchmesser (Induktionsgehärtet)	76,39	76,39	[mm]

Gewichte	Achse Y		Achse Z	
Basis ohne Hub		$m_1 = ca. 217$		[Kg]
Schlitten (Schlittenplatte + Laufwagen)		$m_2 = ca. 105$		[Kg]
Trägerprofil (inkl. Führungen und Zahnstange)	m ₃ = ca. 60		$m_4 = ca. 39$	[Kg/m]

Formeln:

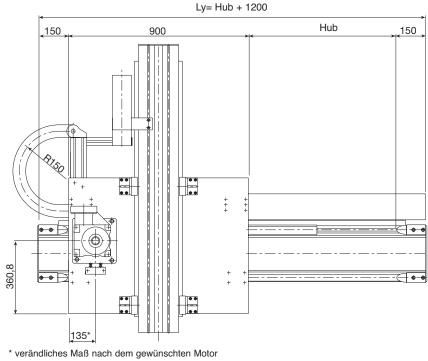
Effektivtraglast: $Pc = Pc_{max}$ -(Lz - 1600)/1000•m₄

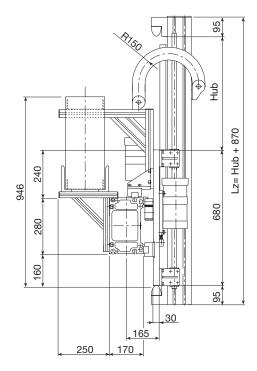
Portalgesamtgewicht: $m_{ges} = m_1 + (m_3 \cdot Hub_v + m_4 \cdot Hub_z)/1000$ (Hub_V und Hub_Z in mm.)

Leistungen	Achse Y	Achse	Z
Max. Traglast (Pc _{max}) bei zentr Anordnung (Lz ≤ 1600 mm)	rischer		
Max. Geschwindigkeit	2,5	2	[m/s]
Max. Beschleunigung	2,5	3	[m/s ²]
Wiederholgenauigkeit	-	± 0,3	[mm]
Max. Profillänge ohne Stoß	12000	12000	[mm]

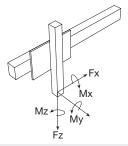
Max. Belastungen und Momente					
Тур	M _x [Nm]	$M_y[Nm]$	$M_z[Nm]$	F _x [N]	$F_z[N]$
PA 8/3	1520	1520	670	3105	4740

Die angegebenen dynamischen Werte berücksichtigen bereits Sicherheitsfaktoren, wie sie für Maschinen in der Automatisierungstechnik üblich sind. Die genannten Werte sind jeder als Höchstleistung einzelner Daten zu betrachten. Bei gleichzeitigen max. Belastungen, wenden Sie sich an unsere technische Kundendienst.
Die angegebene Werte beziehen sich auf die günstigere Anordnung der Laufwagen mit 6 Rollen.


Technische Daten	Achse Y	Achse Z	
Trägerprofil (siehe Seiten 13/15)	Pratyca	Valyda	
Zahnstange (gehärtet, gerade verzahnt)	40x40 Modul 4	30x30 Modul 3	[mm ²]
V-Führungsschiene	55x25 (gehärtet und poliert)	35x16 (gehärtet und poliert)	
	4 Laufwagen mit 6 Rollen Ø62	2 Laufwagen mit 4 Rollen Ø40	
Energieführungskette-Innenquerschnitt	175x45	75x45	[mm ²]
Ritzeldurchmesser (Induktionsgehärtet)	76,39	63,39	[mm]


Gewichte	Achse Y		Achse Z	
Basis ohne Hub		$m_1 = ca. 232$		[Kg]
Schlitten (Schlittenplatte + Laufwagen)		m ₂ = ca. 111		[Kg]
Trägerprofil (inkl. Führungen und Zahnstange)	m ₃ = ca. 66		$m_4 = ca. 35$	[Kg/m]

Formeln:


Effektivtraglast: $Pc = Pc_{max}$ -(Lz - 1600)/1000•m₄

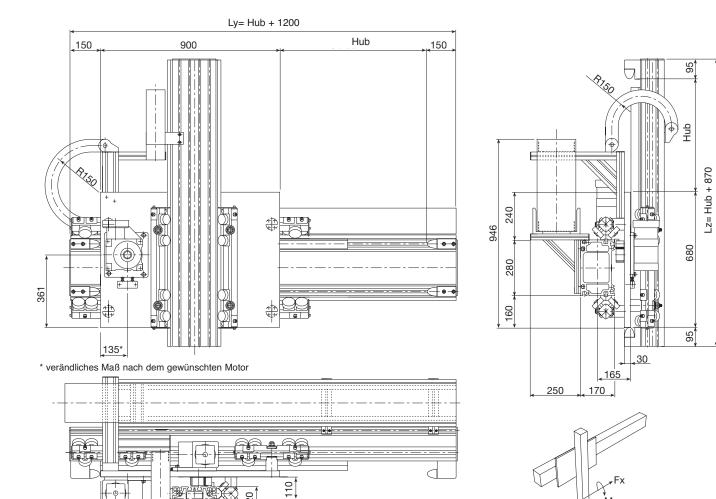
Portalgesamtgewicht: $m_{ges} = m_1 + (m_3 \cdot Hub_y + m_4 \cdot Hub_z)/1000$ (Hub_y und Hub_z in mm.)

일(450

Leistungen	Achse Y	Achse	Z
Max. Traglast (Pc _{max}) bei zentri Anordnung (Lz ≤ 1600 mm)	scher		
Max. Geschwindigkeit	2,5	2	[m/s]
Max. Beschleunigung	2,5	3	[m/s ²]
Wiederholgenauigkeit	-	± 0,1	[mm]
Max. Profillänge ohne Stoß	12000	12000	[mm]

Max. Belastungen und Momente					
Тур	$M_x[Nm]$	$M_y[Nm]$	$M_z[Nm]$	F _x [N]	$F_z[N]$
PAS 8/3	3000	3310	1375	3080	4705

dynamischen Werte berücksichtigen bereits angegebenen Sicherheitsfaktoren, wie sie für Maschinen in der Automatisierungstechnik üblich sind. Die genannten Werte sind jeder als Höchstleistung einzelner Daten zu betrachten. Bei gleichzeitigen max. Belastungen, wenden Sie sich an unsere technische Kundendienst.
Die angegebene Wiederholgenauigkeit kann mit geschliffenen Zahnstangen und Ritzeln mit hoher Verzahnungsqualität (auf Anfrage verfügbar) erreicht


Technische Daten	Achse Y	Achse Z	
Trägerprofil (siehe Seiten 13/15)	Pratyca	Valyda	
Zahnstange (gehärtet, schräg verzahnt)	39x40 Modul 4	29x30 Modul 3	[mm ²]
	4 Führungsschlitten Größe 35	4 Führungsschlitten Größe 25	
Energieführungskette-Innenquerschnitt	175x45	75x45	[mm ²]
Ritzeldurchmesser (Induktionsgehärtet)	76,39	63,66	[mm]

Gewichte	Achse Y		Achse Z	
Basis ohne Hub		$m_1 = ca. 220$		[Kg]
Schlitten (Schlittenplatte + Laufwagen)		m ₂ = ca. 102		[Kg]
Trägerprofil (inkl. Führungen und Zahnstange)	m ₃ = ca. 64		$m_4 = ca. 34$	[Kg/m]

Formeln:

Effektivtraglast: $Pc = Pc_{max}$ -(Lz - 1600)/1000•m₄

Portalgesamtgewicht: $m_{ges} = m_1 + (m_3 \cdot Hub_v + m_4 \cdot Hub_z)/1000$ (Hub_V und Hub_Z in mm.)

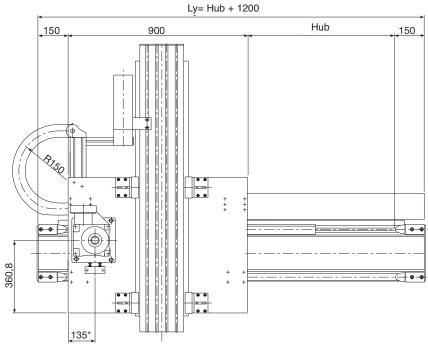
Leistungen	Achse Y	Achse	Z
Max. Traglast (Pc_{max}) bei zent Anordnung ($Lz \le 1600 \text{ mm}$)	rischer		
Max. Geschwindigkeit	2	2	[m/s]
Max. Beschleunigung	2	2	[m/s ²]
Wiederholgenauigkeit	-	± 0,3	[mm]
Max. Profillänge ohne Stoß	12000	12000	[mm]

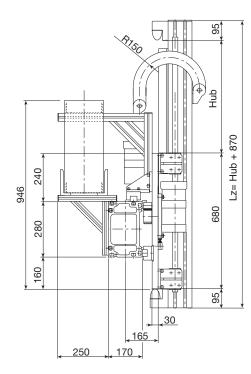
470

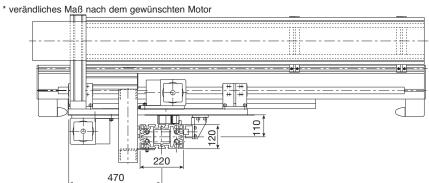
Max. Belastungen und Momente					
Typ $M_x[Nm]$ $M_y[Nm]$ $M_z[Nm]$ $F_x[N]$ $F_z[N]$					
PA 8/6	2430	2430	1200	3220	8405

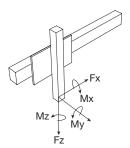
Die angegebenen dynamischen Werte berücksichtigen bereits Sicherheitsfaktoren, wie sie für Maschinen in der Automatisierungstechnik üblich sind. Die genannten Werte sind jeder als Höchstleistung einzelner Daten zu betrachten. Bei gleichzeitigen max. Belastungen, wenden Sie sich an unsere technische Kundendienst.

Die angegebene Werte beziehen sich auf die günstigere Anordnung der Laufwagen mit 6 Rollen.


Technische Daten	Achse Y	Achse Z	
Trägerprofil (siehe Seiten 13/15)	Pratyca	Logyca	
Zahnstange (gehärtet, gerade verzahnt)	40x40 Modul 4	40x40 Modul 4	[mm ²]
V-Führungsschiene	55x25 (gehärtet und poliert)	55x25 (gehärtet und poliert)	
	4 Laufwagen mit 6 Rollen Ø62	2 Laufwagen mit 6 Rollen Ø52	
Energieführungskette-Innenquerschnitt	175x45	75x45	[mm ²]
Ritzeldurchmesser (Induktionsgehärtet)	76,39	76,39	[mm]


Gewichte	Achse Y		Achse Z	
Basis ohne Hub		$m_1 = ca. 260$		[Kg]
Schlitten (Schlittenplatte + Laufwagen)		$m_2 = ca. 122$		[Kg]
Trägerprofil (inkl. Führungen und Zahnstange)	m ₃ = ca. 66		$m_4 = ca. 52$	[Kg/m]


Formeln:

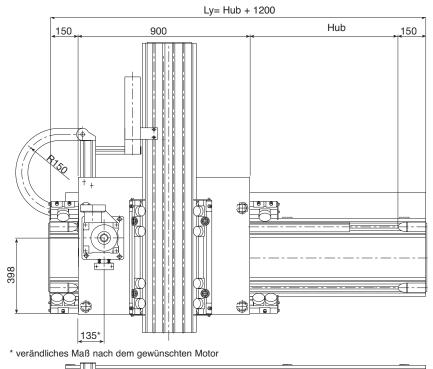

Effektivtraglast: $Pc = Pc_{max}$ -(Lz - 1600)/1000•m₄

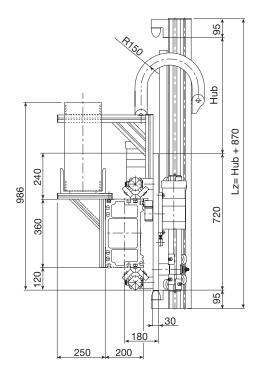
Portalgesamtgewicht: $m_{ges} = m_1 + (m_3 \cdot Hub_y + m_4 \cdot Hub_z)/1000$ (Hub_y und Hub_z in mm.)

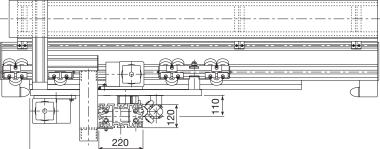
Leistungen	Achse Y	Achse	Z
Max. Traglast (Pc max) bei zentri Anordnung (Lz ≤ 1600 mm)	scher		
Max. Geschwindigkeit	2	2	[m/s]
Max. Beschleunigung	2	2	[m/s ²]
Wiederholgenauigkeit	-	± 0,1	[mm]
Max. Profillänge ohne Stoß	12000	12000	[mm]

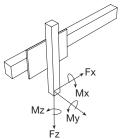
Max. Belastungen und Momente					
Тур	$M_x[Nm]$	$M_y[Nm]$	$M_z[Nm]$	$F_x[N]$	$F_z[N]$
PAS 8/6	4330	4790	2090	3160	8290

dynamischen Werte berücksichtigen bereits angegebenen Sicherheitsfaktoren, wie sie für Maschinen in der Automatisierungstechnik üblich sind. Die genannten Werte sind jeder als Höchstleistung einzelner Daten zu betrachten. Bei gleichzeitigen max. Belastungen, wenden Sie sich an unsere technische Kundendienst.
Die angegebene Wiederholgenauigkeit kann mit geschliffenen Zahnstangen und Ritzeln mit hoher Verzahnungsqualität (auf Anfrage verfügbar) erreicht


Technische Daten	Achse Y	Achse Z	
Trägerprofil (siehe Seiten 13/15)	Pratyca	Valyda	
Zahnstange (gehärtet, schräg verzahnt)	39x40 Modul 4	39x40 Modul 4	[mm ²]
	4 Führungsschlitten Größe 35	4 Führungsschlitten Größe 30	
Energieführungskette-Innenquerschnitt	175x45	75x45	[mm ²]
Ritzeldurchmesser (Induktionsgehärtet)	76,39	76,39	[mm]


Gewichte	Achse Y		Achse Z	
Basis ohne Hub		$m_1 = ca. 234$		[Kg]
Schlitten (Schlittenplatte + Laufwagen)		$m_2 = ca. 102$		[Kg]
Trägerprofil (inkl. Führungen und Zahnstange)	m ₃ = ca. 64		$m_4 = ca. 46$	[Kg/m]


Formeln:


Effektivtraglast: $Pc = Pc_{max}$ -(Lz - 1600)/1000•m₄

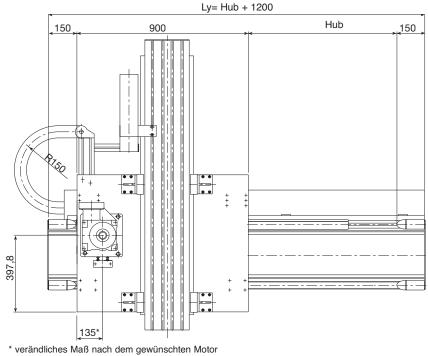
Portalgesamtgewicht: $m_{ges} = m_1 + (m_3 \cdot Hub_v + m_4 \cdot Hub_z)/1000$ (Hub_V und Hub_Z in mm.)

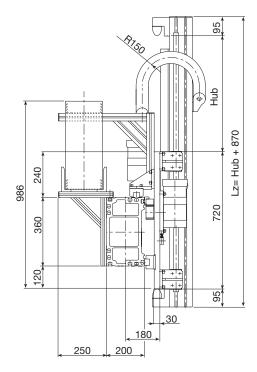
Leistungen	Achse Y	Achse	Z	
Max. Traglast (Pc _{max}) bei zentrischer Anordnung (Lz ≤ 1600 mm)				
Max. Geschwindigkeit	2,5	2	[m/s]	
Max. Beschleunigung	2	2	[m/s ²]	
Wiederholgenauigkeit	-	± 0,3	[mm]	
Max. Profillänge ohne Stoß	12000	12000	[mm]	

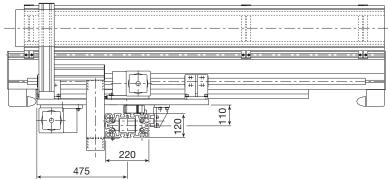
475

Max. Belastungen und Momente						
Тур	$M_x[Nm]$	$M_y[Nm]$	$M_z[Nm]$	F _x [N]	$F_z[N]$	
PA 10/6	2435	2435	1200	3185	8405	

Die angegebenen dynamischen Werte berücksichtigen bereits Sicherheitsfaktoren, wie sie für Maschinen in der Automatisierungstechnik üblich sind. Die genannten Werte sind jeder als Höchstleistung einzelner Daten zu betrachten. Bei gleichzeitigen max. Belastungen, wenden Sie sich an unsere technische Kundendienst.
Die angegebene Werte beziehen sich auf die günstigere Anordnung der Laufwagen mit 6 Rollen.


Technische Daten	Achse Y	Achse Z	
Trägerprofil (siehe Seiten 13/15)	Solyda	Logyca	
Zahnstange (gehärtet, gerade verzahnt)	40x40 Modul 4	40x40 Modul 4	[mm ²]
V-Führungsschiene	55x25 (gehärtet und poliert)	55x25 (gehärtet und poliert)	
	4 Laufwagen mit 6 Rollen Ø62	2 Laufwagen mit 6 Rollen Ø52	
Energieführungskette-Innenquerschnitt	175x45	75x45	[mm ²]
Ritzeldurchmesser (Induktionsgehärtet)	76,39	76,39	[mm]


Gewichte	Achse Y		Achse Z	
Basis ohne Hub		$m_1 = ca. 283$		[Kg]
Schlitten (Schlittenplatte + Laufwagen)		$m_2 = ca. 122$		[Kg]
Trägerprofil (inkl. Führungen und Zahnstange)	m ₃ = ca. 85		$m_4 = ca. 52$	[Kg/m]


Formeln:

Effektivtraglast: $Pc = Pc_{max}$ -(Lz - 1600)/1000•m₄

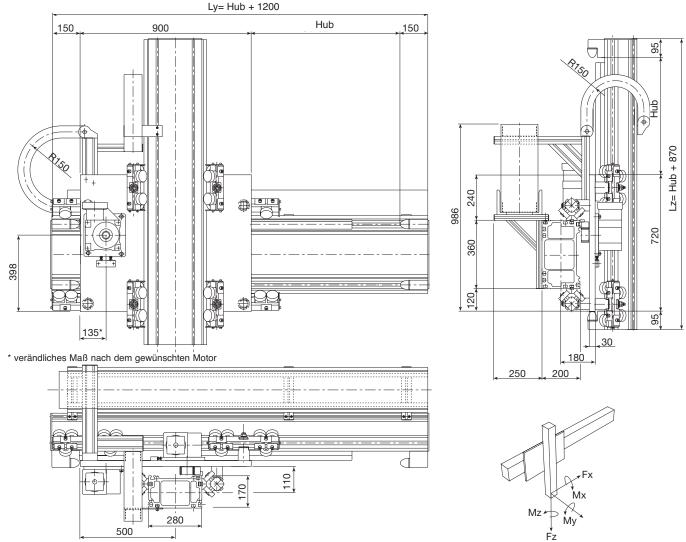
Portalgesamtgewicht: $m_{ges} = m_1 + (m_3 \cdot Hub_y + m_4 \cdot Hub_z)/1000$ (Hub_V und Hub_Z in mm.)

Fz Fx Mx My Fz

Leistungen	Achse Y	Achse	Z	
Max. Traglast (Pc max) bei zentrischer Anordnung (Lz ≤ 1600 mm)				
Max. Geschwindigkeit	2,5	2	[m/s]	
Max. Beschleunigung	2	2	[m/s ²]	
Wiederholgenauigkeit	-	± 0,1	[mm]	
Max. Profillänge ohne Stoß	12000	12000	[mm]	

Max. Belastungen und Momente						
Тур	M _x [Nm]	$M_y[Nm]$	$M_z[Nm]$	F _x [N]	$F_z[N]$	
PAS 10/6	4560	5050	2090	3150	8290	

dynamischen Werte berücksichtigen bereits angegebenen Sicherheitsfaktoren, wie sie für Maschinen in der Automatisierungstechnik üblich sind. Die genannten Werte sind jeder als Höchstleistung einzelner Daten zu betrachten. Bei gleichzeitigen max. Belastungen, wenden Sie sich an unsere technische Kundendienst.
Die angegebene Wiederholgenauigkeit kann mit geschliffenen Zahnstangen und Ritzeln mit hoher Verzahnungsqualität (auf Anfrage verfügbar) erreicht


Technische Daten	Achse Y	Achse Z	
Trägerprofil (siehe Seiten 13/15)	Solyda	Logyca	
Zahnstange (gehärtet, schräg verzahnt)	39x40 Modul 4	39x40 Modul 4	[mm ²]
	4 Führungsschlitten Größe 35	4 Führungsschlitten Größe 30	
Energieführungskette-Innenquerschnitt	175x45	75x45	[mm ²]
Ritzeldurchmesser (Induktionsgehärtet)	76,39	76,39	[mm]

Gewichte	Achse Y		Achse Z	
Basis ohne Hub		$m_1 = ca. 260$		[Kg]
Schlitten (Schlittenplatte + Laufwagen)		$m_2 = ca. 102$		[Kg]
Trägerprofil (inkl. Führungen und Zahnstange)	m ₃ = ca. 83		$m_4 = ca. 46$	[Kg/m]

Formeln:

Effektivtraglast: $Pc = Pc_{max}$ -(Lz - 1600)/1000•m₄

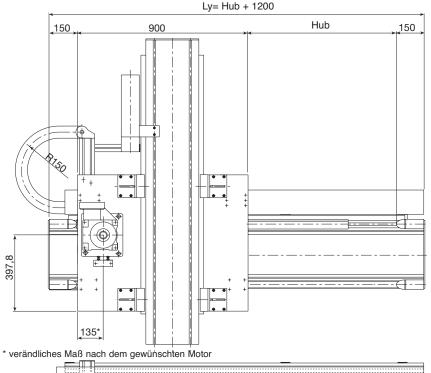
Portalgesamtgewicht: $m_{ges} = m_1 + (m_3 \cdot Hub_v + m_4 \cdot Hub_z)/1000$ (Hub_V und Hub_Z in mm.)

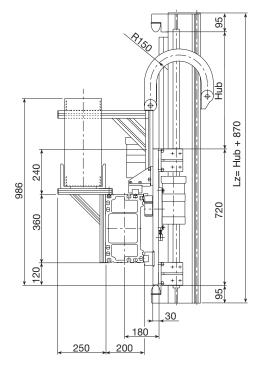
Leistungen	Achse Y	Achse	Z	
Max. Traglast (Pc_{max}) bei zentrischer Anordnung ($Lz \le 1600 \text{ mm}$)				
Max. Geschwindigkeit	2	2	[m/s]	
Max. Beschleunigung	2	2	[mm]	
Wiederholgenauigkeit	-	± 0,3	[mm]	
Max. Profillänge ohne Stoß	12000	12000	[mm]	

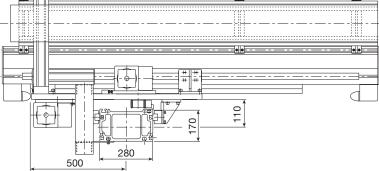
Wir empfehlen Ausgleichs-Zylinders

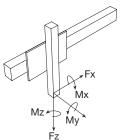
Max. Belastungen und Momente						
Typ $M_x[Nm]$ $M_y[Nm]$ $M_z[Nm]$ $F_x[N]$ $F_z[N]$						
PA 10/8	6900	7335	4590	3250	10280	

Die angegebenen dynamischen Werte berücksichtigen bereits Sicherheitsfaktoren, wie sie für Maschinen in der Automatisierungstechnik üblich sind. Die genannten Werte sind jeder als Höchstleistung einzelner Daten zu betrachten. Bei gleichzeitigen max. Belastungen, wenden Sie sich an unsere technische Kundendienst.


Die angegebene Werte beziehen sich auf die günstigere Anordnung der Laufwagen mit 6 Rollen.


Technische Daten	Achse Y	Achse Z	
Trägerprofil (siehe Seiten 13/15)	Solyda	Pratyca	
Zahnstange (gehärtet, gerade verzahnt)	40x40 Modul 4	40x40 Modul 4	[mm²]
V-Führungsschiene	55x25 (gehärtet und poliert)	55x25 (gehärtet und poliert)	
	4 Laufwagen mit 6 Rollen Ø6	4 Laufwagen mit 4 Rollen Ø6	2
Energieführungskette-Innenquerschnitt	175x45	75x45	[mm²]
Ritzeldurchmesser (Induktionsgehärtet)	76,39	76,39	[mm]
Gewichte	Achse Y	Achse Z	
Basis ohne Hub	$m_1 = ca. 3$	00	[Kg]
Schlitten (Schlittenplatte + Laufwagen)	$m_2 = ca. 1$	22	[Kg]
Trägerprofil (inkl. Führungen und Zahnstange)	m ₃ = ca. 85	m ₄ = ca. 66	[Kg/m]


Formeln:


Effektivtraglast: $Pc = Pc_{max}$ -(Lz - 1600)/1000•m₄

Portalgesamtgewicht: $m_{ges} = m_1 + (m_3 \cdot Hub_y + m_4 \cdot Hub_z)/1000$ (Hub_y und Hub_z in mm.)

Leistungen	Achse Y	Achse	Z							
Max. Traglast (Pc_{max}) bei zentrischer Anordnung ($Lz \le 1600 \text{ mm}$)										
Max. Geschwindigkeit	2	2	[m/s]							
Max. Beschleunigung	2	2	[mm]							
Wiederholgenauigkeit	± 0,1	± 0,1	[mm]							
Max. Profillänge ohne Stoß	12000	12000	[mm]							

Max. Belastungen und Momente											
Тур	Typ $M_x[Nm]$ $M_y[Nm]$ $M_z[Nm]$ $F_x[N]$ $F_z[N]$										
PAS 10/	8 5940	6580	3625	3195	11102						

Die angegebenen dynamischen Werte berücksichtigen bereits Sicherheitsfaktoren, wie sie für Maschinen in der Automatisierungstechnik üblich sind. Die genannten Werte sind jeder als Höchstleistung einzelner Daten zu betrachten. Bei gleichzeitigen max. Belastungen, wenden Sie sich an unsere technische Kundendienst.

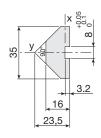
Die angegebene Wiederholgenauigkeit kann mit geschliffenen Zahnstangen und Ritzeln mit hoher Verzahnungsqualität (auf Anfrage verfügbar) erreicht werden.

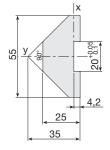
Technische Daten	Achse Y	Achse Z	
Trägerprofil (siehe Seiten 13/15)	Solyda	Pratyca	
Zahnstange (gehärtet, schräg verzahnt)	39x40 Modul 4	39x40 Modul 4	[mm ²]
	4 Führungsschlitten Größe 35	4 Führungsschlitten Größe 35	
Energieführungskette-Innenquerschnitt	175x45	75x45	[mm ²]
Ritzeldurchmesser (Induktionsgehärtet)	76,39	76,39	[mm]

Gewichte	Achse Y		Achse Z	
Basis ohne Hub		$m_1 = ca. 275$		[Kg]
Schlitten (Schlittenplatte + Laufwagen)		$m_2 = ca. 102$		[Kg]
Trägerprofil (inkl. Führungen und Zahnstange)	m ₃ = ca. 83		m ₄ = ca. 64	[Kg/m]

Formeln:

Effektivtraglast: $Pc = Pc_{max}$ -(Lz - 1600)/1000•m₄


Portalgesamtgewicht: $m_{ges} = m_1 + (m_3 \cdot Hub_v + m_4 \cdot Hub_z)/1000$ (Hub_V und Hub_Z in mm.)

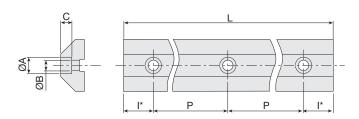

Stahl V-Führungen

Werkstoff: 100 Cr6 (R > 950 N/ mm2) DVergütet: Kernhärte 240 HB

Induktionsgehärtete und pollierte: Kernhärte > 58 HRC.

V-Führungen 35x16

V-Führungen 55x25

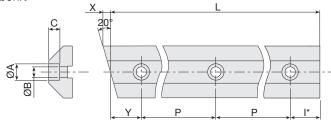

Merkmale	35x16	55x25	
Trägheitsmoment IX	7932	41906	mm⁴
Trägheitsmoment IY	36405	194636	mm⁴
Gewicht	3,3	7,8	Kg/m

Sonderbearbeitungen: gebohrte Führungen mit geradem Schnitt

Diese Bearbeitung wird ausgeführt, wenn keine Führungsverlängerung erforderlich wird. Bei Bestellung, die gewünschte Bearbeitung zusammen mit der Best.-Nr. angeben:

- /L V-Führung von Länge "L" – nicht gebohrt
- /LF V-Führung von Länge "L" - gebohrt

*: Wenn das Maß "I" länger als 80 mm ist, wird eine zusätzliche Bohrung auf Abstand 20 mm (für Typ 203.0027/28) oder 25 mm (für Typ 203.0122/423) am Führungsende vorgesehen.


Maß	Behandlung	L.max	Р	Α	В	С	BestNr.
35x16	vergütet	6100	150	11	7	7,5	203.0028
35x16	gehärtet	5900	100	11	7	7,5	203.0027
55x25	vergütet	6100	200	17	10	11,5	203.0122
55x16	gehärtet	5900	150	17	10	11,5	203.0423

Sonderbearbeitungen: gebohrte Führungen mit 1 geraden und 1 schrägen Schnitt

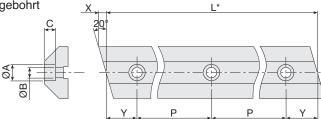
Wenn die gewünschte Führungslänge 6 m überschreitet, werden die Stöße mit schrägen Schnitten von 20° ausgeführt. Bei Bestellung, die gewünschte Bearbeitung zusammen mit der Best.-Nr. angeben:

- V-Führung mit 1 schrägen Schnitt von Länge "L" nicht gebohrt V-Führung mit 1 schrägen Schnitt von Länge "L" gebohrt - /LX
- /LFX

*: Die erste Bohrung mit Abstand Y und die weiteren mit Abstand P ausgeführt. Wenn das Maß "I" länger als 80 mm ist, wird eine zusätzliche Bohrung auf Abstand 20 mm (für Typ 203.0027/28) oder 25 mm (für Typ 203.0122/423) am Führungsende vorgesehen.

Maß	Behandlung	L.max	Р	Υ	Α	В	С	BestNr.
35x16	vergütet	6080	150	20	11	7	7,5	203.0028
35x16	gehärtet	5900	100	20	11	7	7,5	203.0027
55x25	vergütet	6070	200	25	17	11	11,5	203.0122
55x25	gehärtet	5900	150	25	17	11	11,5	203.0423

Sonderbearbeitungen: gebohrte Führungen mit 2 schrägen Schnitten


Wenn die gewünschte Führungslänge 6 m überschreitet, werden die Führungsverlängerungen mit schrägen Schnitten von 20° ausgeführt.

Bei Bestellung, die gewünschte Bearbeitung zusammen mit der Best.-Nr. angeben:

V-Führung mit 2 schägen Schnitten von Länge "L" – nicht gebohrt

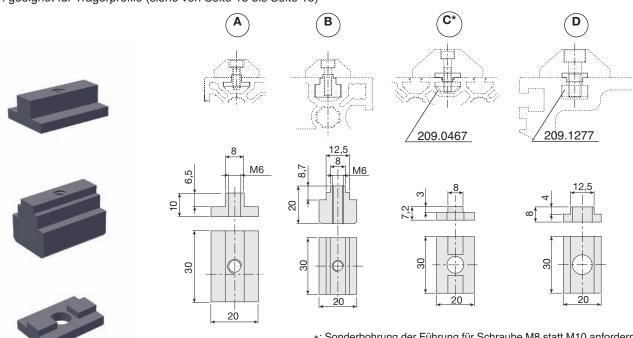
- /LFXX V-Führung mit 2 schägen Schnitten von Länge "L" - gebohrt

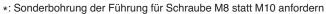
*: Zu einem richtigen Bohrungsabstand, muss die Länge "L" gleich an n•P + 2•Y sein.

Maß	Behandlung	L.max	P	Υ	Α	В	С	BestNr.
35x16	vergütet	6040	150	20	11	7	7,5	203.0028
35x16	gehärtet	5840	100	20	11	7	7,5	203.0027
55x25	vergütet	6050	200	25	17	10	11,5	203.0122
55x25	gehärtet	5900	150	25	17	10	11,5	203.0423

BESTELLBEISPIEL:

2 St. 203.0027 / 5150 FX + 1 St. 203.0027 / 5840 FXX


Bearbeitung Länge - Führungstyp


Zentrierstücke / -muttern für V-Führungen

Material: Stahl C40, verzinkt.

A und C: geeignet für mittlere Profile (siehe Seiten 12-13)

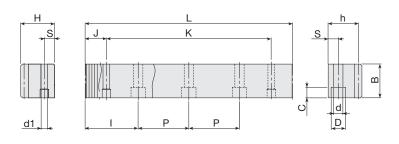
B und D: geeignet für Trägerprofile (siehe von Seite 13 bis Seite 15)

	Führung	Nutmaß	Schraube	BestNr.
Α	35x16	8	M6x20	209.0298
В	35x16	12,5	M6x25	209.1855
C*	55x25	8	M8x30	209.0479
D	55x25	12,5	M10x30	209.0480
ט	55X25	12,5	MTUX30	209.0480

Profile mit montierter V-Führungen

tecline by tecnocenter

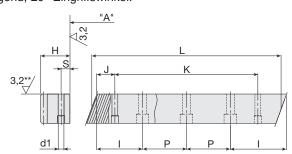
Zur Profilspezifikationen siehe von Seite 10 bis Seite 15, zur Führungen siehe Seite 50, zur Gewindemuttern siehe Seite 51.

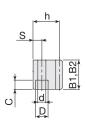

			vergütet	gehärtet	vergütet	gehärtet
	Profil	Führung	203.0028	203.0027	203.0122	203.0423
(HA)	E01-3		237.0013	237.2398	-	-
	F01-1		237.0014	237.0015	-	-
	F01-2		237.0016	237.0017	-	-
A.A.	E01-4		237.0018	237.0019	-	-
	MA1-3		237.1387	237.1388	-	-
	MA1-5		237.1141	237.1142	-	-
	E01-5		237.0027	237.0028	-	-
	STATYCA		237.2159 237.215		237.2301	237.0005
	VALYDA		237.2126	237.2013	237.0004	237.1542
	LOGYCA		237.0028	237.2421	237.0021	237.0022
	PRATYCA		237.0023	237.0024	237.2157	237.1543
	SOLYDA		237.0025	237.0026	237.0002	237.0006
Bestellcodierung:	237.XXXX - X	X / L		Profil- und Führung: Sonderbearbeitunge Tabelle BestNr.		

Zahnstangen

Gerade verzahnt

Gerade verzahnte Zahnstange, 20° Eingriffswinkel.


Тур									Rs			Zahnhärte	e Ge	enauigkeit
BD	Norm	algeglü	hter Stah	nl C45, g	efräst			650	N/mr	n²		-	0,08	5mm/300mm
TD	Normalgeglühter Stahl C45, induktiv gehärtet				650 N/mm ²				HRC 56	0,08	5mm/300mm			
		_				_	_	14 (113)	_		_	17	0	


Mod.	Н	В	L	- 1	J	d	D	С	d1(H7)	S	h	Р	K	Gewicht [Kg]	BestNr.
2	25	25	502,6	62,3	24,6	7	11	7	6	9	23	125,66	452,37	2,3	211.2429
2	25	25	1005,3	62,3	24,6	7	11	7	6	9	23	125,66	955	4,5	211.2363
3	30	30	509	63,1	18,35	9	14	9	8	10	27	127,23	471,2	3,2	211.2367
3	30	30	1017,9	63,1	18,35	9	14	9	8	10	27	127,23	980,1	6,4	211.2351
4	40	40	502,6	62,3	24,6	11	17	9	8	12	36	125,66	452,37	5,7	211.2366
4	40	40	1005,3	62,3	24,6	11	17	9	8	12	36	125,66	955	11,3	211.2349

Schräg verzahnt

Schäg verzahnte Zahnstange,19° 31' 42 " rechtssteigend, 20° Eingriffswinkel.

Тур																Rs	Z	Zahnhär	te	Gena	uigkeit
KBD	No	rmalg	eglür	nter S	tahl	C45, ge	efräst								650	0 N/n	nm²	HRC 56	6 O,	085mı	m/300mm
KTD	No	rmalg	eglür	nter S	tahl	C45, in	duktiv	gehärt	et						65	0 N/n	nm²	HRC 56	o,	085mı	m/300mm
KFD	No	rmalg	eglüh	nter C	45, i	nd. geh	närtet, 1	feinbea	ırbeit	tet au	f der	Obe	fläch	ne "A	" 65	0 N/n	nm²	HRC 5	6 (0,05m	m/300mm
KRD	Sta	ahl C4	5, ve	rgute	t, inc	luktiv g	ehärtet	t und g	esch	liffen.					900) N/m	nm²	HRC 5	6 0,	025mı	m/300mm
Mod.	Н1	H 2	Нз	Вı	B ₂	L	ı	J	d	D	С	d1	S	h ₁	h ₂	hз	Р	K	N	Kg	BestNr.
2	25	24,8	24	25	24	500	62,5	31,7	7	11	7	5,7	8	23	22,8	22	125	436,6	8,5	2,2	211.2429
2	25	24,8	24	25	24	1000	62,5	31,7	7	11	7	5,7	8	23	22,8	22	125	936,6	8,5	4,3	211.2363
3	30	29,8	29	30	29	500	62,5	35	10	15	9	7,7	9	27	26,8	26	125	430	10,3	3,0	211.2367
3	30	29,8	29	30	29	1000	62,5	35	10	15	9	7,7	9	27	26,8	26	125	930	10,3	6,1	211.2351
4	40	39,8	39	40	39	500	62,5	33,3	10	15	9	7,7	12	36	35,8	35	125	433	13,8	5,5	211.2366
4	40	39,8	39	40	39	1000	62,5	33,3	10	15	9	7,7	12	36	35,8	35	125	933,4	13,8	10,9	211.2349

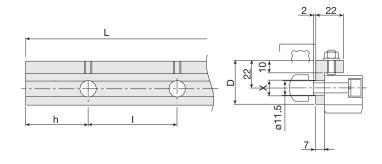
 \mathbf{H}_1 \mathbf{h}_1 für Zahnstangen KBD, KTD

H₂ h₂ für Zahnstangen KFD

H₃ h₃ für Zahnstangen KRD

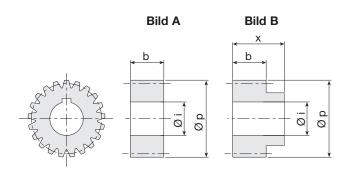
B₁ für Zahnstangen KBD,KTD,KFD

B₂ für Zahnstangen KRD


BESTELLBEISPIEL:

Anschlagleisten

Material: Aluminiumlegierung 6082 natur eloxiert.

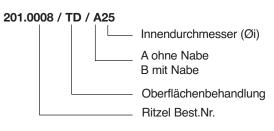


Modul	D	L	I	h	Anz. Bohr.	X	Gewicht [Kg]	BestNr.
2	35	249	126,1	61,45	2	8	0,3	315.0029
2	35	498	126,1	60,35	4	8	0,6	315.0030
3	35	249	126,1	61,45	2	8	0,3	215.2368
3	35	498	126,1	60,35	4	8	0,6	215.2137
3	35	249	126,1	61,45	2	12,5	0,3	215.2369
3	35	498	126,1	60,35	4	12,5	0,6	215.2281
4	39	249	125,3	61,85	2	12,5	0,3	215.2243
4	39	499	125,3	61,55	4	12,5	0,6	215.2078

Ritzel

Ritzel mit gerader und geschliffener Verzahnung, 19° 31' 42" rechtssteigend, 20° Eingriffswinkel.

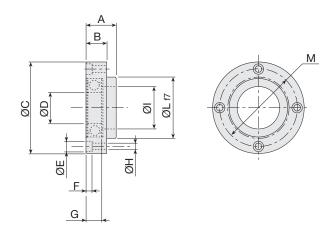
Тур		Werkstoff	Oberflächenbehandlung	RS	Zahnhärte
TD (Gerade verzahnt	C45	induktiv gehärtet	650 N/mm ²	HRC 56
KRX (Gerade verzahnt, geschliffen	16MnCr5	einsatzgehärtet	900 N/mm ²	HRC 60


Schräg verzahnt

Mod.	Gew.	Z	Øр	Øi	b	X	BestNr.
2	0,3	21	44,56	16,22	28	56	201.0005
3	0,8	20	63,66	22,25,30,32	28	56	201.0007
4	1,5	18	76,39	32	40	75	201.0009

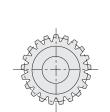
Gerade verzahnt

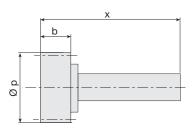
Mod.	Gew.	Z	Øр	Øi	b	x	BestNr.
2	0,3	22	44	15,20,25	25	-	201.0004
3	0,89	21	63	25,30	30	50	201.0006
4	1,7	19	76	30,35	40	60	201.0008


BESTELLBEISPIEL:

Ritzellager

Material: Aluminiumlegierung 6061.




Α	В	ØC	ØD	ØE	F	G	ØН	ØI	ØL	M	Gewicht	BestNr.
40	27	110	68	11	6,5	16	7	55	70	90	0,69	217.0001.M
32	22	95	62	11	6,5	16,5	7	45	65	82	0,46	217.0002.M
35	25	100	55	11	6,5	16	7	48	68	83	0,52	217.0003.M
29	19	90	47	11	6,5	14	7	40	60	73	0,38	217.0004.M

Ritzenwellen für Atlanta-Getriebe

Ritzel mit gerader und geschliffener Verzahnung (19° 31' 42" link).

Тур	Werkstoff	Oberflächenbehandlung	RS	Zahnhärte
Gerade verzahnt	16MnCr5	einsatzgehärtet	650 N/mm ²	HRC 50
Gerade verzahnt, geschliffen	16MnCr5	einsatzgehärtet	900 N/mm ²	HRC 60

Schräg verzahnt

Mod.	Gewicht	Z	Øр	b	x
2	1,5	30	63,66	25	140
3	1,33	20	63,66	30	142
2	1,60	30	63,66	25	164,5
3	1,60	20	63,66	30	167
4	1,85	15	63,66	40	172
3	2,40	20	63,66	30	185
4	2,50	15	63,66	40	190
4	3,90	15	63,66	40	215

Gerade verzahnt


Mod.	Gewicht	Z	Øр	b	x
2	1,25	32	64	25	140
3	1,33	21	63	30	142
2	1,50	32	64	25	164,5
3	1,60	21	63	30	167
4	2	14	68	40	172
3	2,50	21	63	30	185
4	2,65	17	68	40	190
4	4,05	17	68	40	215

Automatisches Schmiersystem programmierbar feur Zahnstange

Schmierfettlieferung durch elektromechanische Betaetigung; Speisung mit ersetzbare Batterie (Lebensdauer: ung 1 Jahr) (a). Das Schmierfett wird gleichmaessig verteilt auf die Zahnstange durch bestimmten Ritzel. (Tab. 1). Vorgesehen sie bitte ein Kit je Zahnstange.

Kit: - fuer vollstaendige Standardsysteme, on Ort und Stelle montierte, die Lieferung wird wie Bild. C (z.B.: Bild B) sein;

- fuer die Ersatzteile, sehen Sie bitte Bild. A (Cod. Tab. 1);

2- Vollstaend. U. automatischen Schmiersystem, an Ort u. Stelle montiert (s. Bild. B u. C)

Best.-Nr. 136.0003/Beschreibun

Antiabfall -Sicherheitsvorrichtung mit Bremsepneumatischesteuerung

Die Antiabfall-Sicherheitsvorrichtungen, verschiedene Grösse verfügbare, nach Anwendung- Sicherheitsgrad Frage angeboten werden. Zum Beispiel, mechanische Sperre des freier Abfall der Masse -irgendeine Hubpunkte, oder Sperre in statische Bedingungen in der gewünschte Stellung. Optional.

Spezifizieren sie bitte Sicherheitsgrad, Eingriffstyp, Gewicht und Hub. Nach Frage, Sicherheitsverschlusse.

116.0025

116.0023

116.0024

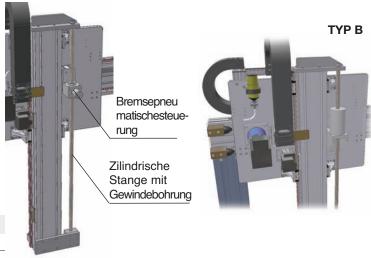
[1]

[1]

[1]

TYP A

1- Bremse kit mit zylindrisch Stange

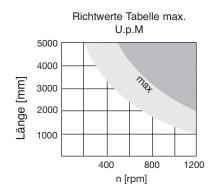

Beschreibung

m3 - Schraegzahn

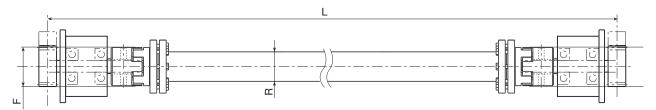
m4 - Schraegzahn

m4 - Geradzahn

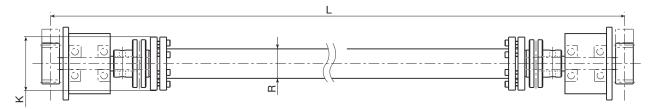
	0.00.9		
Тур	Code	/Gewicht (kg)	/Hub(mm)
Α	236.0018	<i>/</i>	<i>/</i>
В	236.0019	<i>/</i>	<i>/</i>

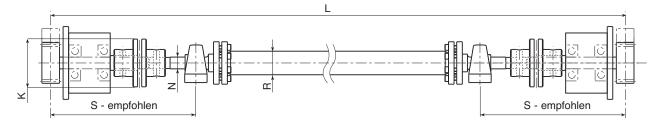


Sicherheitsbremse gegen freier Abfall der Masse


Verbindungswellen

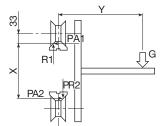
Zum gemeinsamen Antrieb zweier parallel angeordneter Ritzel bzw. Schlitten sind eine Reihe von Standardverbindungen mit Hohlwellen lieferbar. Unser kompletter Satz enthält alle Komponenten mit Spannbuchsen und Wellen.




Typ 1 - Verbindung mit elastischen Kupplungen für niedrige Geschwindigkeiten und Achsabstände bis zu 2000 mm

Typ 2 - Verbindung mit Kupplungen mit Lamellen zur spielfreien Übertragung

Typ 3 - Verbindung mit Kupplungen mit Lamellen zur spielfreien Übertragung mit Unterstützung

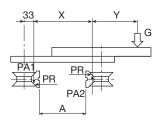


R(*)	K	F	N	S	Lmax	Drehmoment [Nm]	Trägheitsmoment [Kgm²]	Typ1 BestNr./L	Typ2 BestNr./L	Typ3BestNr./L
40	67	55	20	200	6.200	20	0,0028 + 0,46 x L. x10 ⁻⁶	436.0948	436.0957	436.0965
50	81	65	25	235	6.300	35	0,0092 + 0,66 x L. x10 ⁻⁶	436.0949	436.0958	436.0966
50	93	80	25	235	6.300	70	0,0161 + 1,34 x L. x10 ⁻⁶	436.0951	436.0971	436.0974
70	104	95	25	235	6.400	100	0,0293 + 2,93 x L. x10 ⁻⁶	436.0952	436.0960	436.0968
80	126	120	25	250	6.400	190	0,0793 + 4,5 x L. x10 ⁻⁶	436.0955	436.0963	436.0984
90	143	-	-	-	6.500	300	0,1456 + 6,53 x L. x10 ⁻⁶	-	436.0986	436.0987
110	185	-	-	-	6.000	420	0,3499 + 12,3 x L. x10 ⁻⁶	436.0144	436.0145	436.0146

 $({}^\star) \; R: \; Rohrdurchmesser \; und \; Material \; werden \; gem\"{a} \mathcal{B} \; Geschwindigkeit, \; Abstand \; "L", \; Drehmoment \; und \; Genauigkeit \; ausgew\"{a}hlt.$

V-Rollen für Führung 35x16

Auf Anfrage sind V-Rollen mit Kunststoffmantel, Rollen mit längerem Bolzen lieferbar. Wir empfehlen gehärteten Führungen zu verwenden. Material: Mantel aus gehärtetem und brüniertem Stahllegierung C45, Bolzen und Buchsen aus brüniertem Stahl.



$$P_{A1} = \frac{G \cdot Y}{X} = P_{A2}$$

$$P_{R1} = G + P_{A1}$$

$$P_{R2} = P_{A2}$$

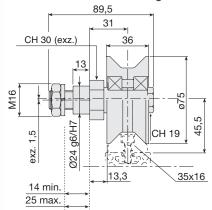
X = A + 20 mm

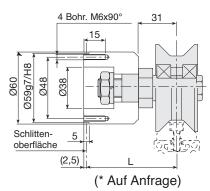
$$P_{A1} = \frac{G \cdot Y}{X}$$

$$P_{A2} = P_{A1} + G$$

X = A + 20 mm

$P_{A2} = G - P_{A1}$ X = A + 20 mm

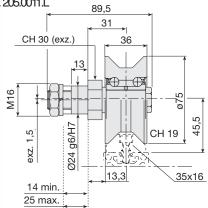

PA2

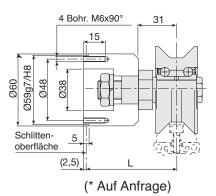

V-Rollen, mittlere und leichte Ausführung

V-Rollen mit Radial-Kugellager (leichte Ausführung) und Schrägkugellager (mittlere Ausführung). N.B.: Auf Anfrage liefern wir Buchsen, um den Abstand zwischen die V-Führung und die Schlittenplatte zu erhöhen.

Bei Bestellung, den gewünschten Abstand (L) zusammen mit der Best.-Nr. angeben. z.B.:205.0782.L

Version	Тур	Lager	C(1Lag.)	Cw (2Lag.)	C0w (2Lag.)	PR[N]	PA[N]	Geschw. [g/m]	Gew. [kg]	BestNr.
Leichte	zyl.	Radial-Kugel	9600	12960	6410	2000	1000	2500	1	205.0781
Leichte	exz.	Radial-Kugel	9600	12960	6410	2000	1000	2500	1	205.0782
Mittlere	zyl.	Radial-Kugel	12500	16870	9000	3200	1800	2500	1	205.1547
Mittlere	exz.	Radial-Kugel	12500	16870	9000	3200	1800	2500	1	205.1546


V-Rolle (integrale)


V- Rollen mit zwei Reihe Schrägkontakt. Zweiseitige Gleitringdichtung. Genauigkeitsklasse C6. Sie können entlang der Achse belasten werden, wenn Pa < 0,4 Pr eff.

Achtung: um den Achsabstand zwischen Führung und Rollenunterstützungsebene zu erhöhen, sind die Buchse lieferbare. Anzeigen sie bitte,

ausser Rollenkode, auch gefragten Achsabstand (L). Es. 205.0011.L

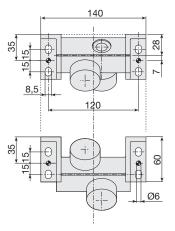
Тур	Lager	С	C0 (2Lag.)	PR[N]	PA[N]	Geschw. [g/m]	Gewicht [kg]	BestNr.
zyl.	Kegelrollen	21000	13900	4500	1800	2500	1	205.0011
exz.	Kegelrollen	21000	13900	4500	1800	2500	1	205.0012

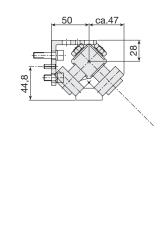
Laufwagen

Laufwagen mit 2, 3 oder 4 Rollen Ø40, Aluminium-Druckgußlegierung (Rs=280 N/mm²).

Laufwagen mit 4 oder 6 Rollen Ø52 und Ø62, Strangpressteil aus Aluminiumlegierung (Rs=310 N/mm²).

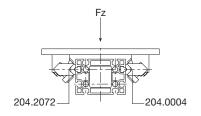
Montagebolzen aus hochfestem Stahl (Rs=800 N/mm²).

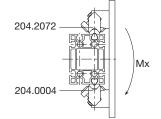

Laufwagen mit 2 Rollen Ø40


Zur korrekten Anwendung folgen Sie bitte dem dargestellten Montagebeispiel.

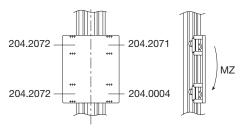
Die Laufwagen mit exzentrischen Rollen müssen nach dem Einbau verstiftet werden, um Probleme mit der Profiltoleranzen zu vermeiden.

Material: Aluminium-Druckguß Legierung; Bolzen und Buchse aus brüniertem Stahl.



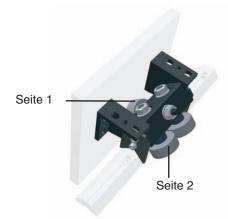


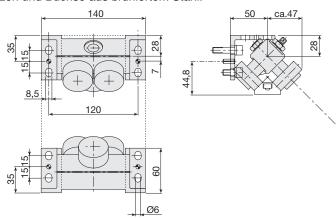
Rolle Seite 1	Rolle Seite 2	Beschreibung	Gewicht [Kg]	BestNr.
Zylindrisch	Zylindrische	Laufwagen mit 2 Rollen Ø40 - zylindrische	1	204.2072
Exzentrisch	Zylindrische	Laufwagen mit 2 Rollen Ø40 - 1 zyl. Seite 1	1	204.2071
Zylindrische	Exzentrisch	Laufwagen mit 2 Rollen Ø40 - 1 zyl. Seite 2	1	204.0004
Exzentrische	Exzentrisch	Laufwagen mit 2 Rollen Ø40 - 1 zylindrische	1	204.0019


Montagebeispiel

Horizontalführung Zentrierte Last

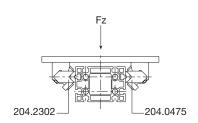
Horizontalführung Seitlicher Schlitten oder außerachsige Last

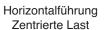

Senkrechtführung

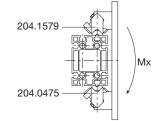


Laufwagen mit 3 Rollen Ø40

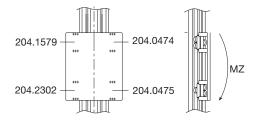
Zur korrekten Anwendung folgen Sie bitte dem dargestellten Montagebeispiel.


Die Laufwagen mit exzentrischen Rollen müssen nach dem Einbau verstiftet werden, um Probleme mit der Profiltoleranzen zu vermeiden. Material: Aluminium-Druckguß Legierung; Bolzen und Buchse aus brüniertem Stahl.



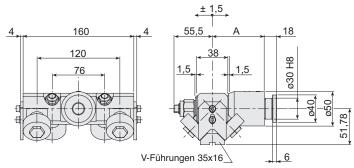


Rollen Seite 1	Rollen Seite 2	Beschreibung	Gewicht [Kg]	BestNr.
1 Zylindrisch	2 Zylindrische	Laufwagen mit 3 Rollen Ø40 - zylindrische	1,3	204.1579
1 Exzentrisch	2 Zylindrische	Laufwagen mit 3 Rollen Ø40 - 1 exz. Seite 1	1,3	204.0474
2 Zylindrische	1 Zylindrische	Laufwagen mit 3 Rollen Ø40 - zylindrische	1,3	204.2302
2 Zylindrische	1 exzentrische	Laufwagen mit 3 Rollen Ø40 - 1 exz. Seite 2	1,3	204.0475


Montagebeispiel

Horizontalführung Seitlicher Schlitten oder außerachsige Last

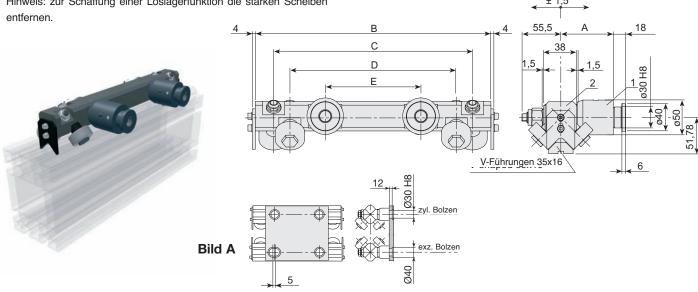
Senkrechtführung


Schwinglaufwagen mit 4 Rollen Ø40

Material: Aluminium-Druckguß Legierung; Bolzen und Buchse aus brüniertem Stahl.

Hinweis: zur Schaffung einer Loslagerfunktion die starken Scheiben entfernen.

	Α	Gew. [Kg]	BestNr.
Laufwagen mit Zylinderbolzen	75	2,2	204.0015
Laufwagen mit Exzenterbolzen (±1 mm)	75	2,2	204.0016
Laufwagen mit Zylinderbolzen	50	1,8	204.0032
Laufwagen mit Exzenterbolzen (±1 mm)	50	1,8	204.0033



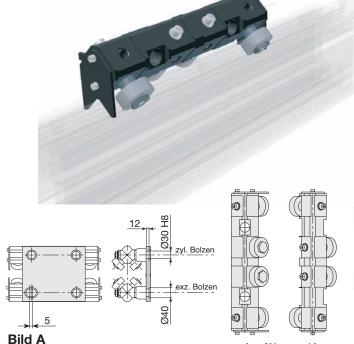
Ersatzteil	Α	BestNr.
Laufwagenkörper komplett mit Rol	llen	204.0013
Zylinderbolzen	75	236.0010
Exzenterbolzen (±1 mm)	75	236.0011
Zylinderbolzen	50	236.0014
Exzenterbolzen (±1 mm)	50	236.0015

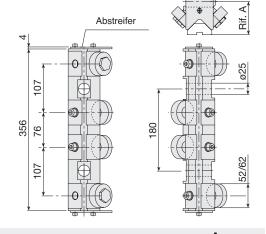
Fester Laufwagen mit 4 Rollen Ø40

Material: Aluminium-Druckguß Legierung; Bolzen und Buchse aus brüniertem Stahl.

Hinweis: zur Schaffung einer Loslagerfunktion die starken Scheiben

	Α	BestNr.
Laufwagen L=370 komplett mit zyl. Bolzen	75	204.0017
Laufwagen L=370 komplett mit exz. Bolzen (±1 mm)	75	204.0018
Laufwagen L=600 komplett mit zyl. Bolzen	75	204.0027
Laufwagen L=600 komplett mit exz. Bolzen (±1 mm)	75	204.0028
Laufwagen L=370 komplett mit zyl. Bolzen	50	204.0030
Laufwagen L=370 komplett mit exz. Bolzen (±1 mm)	50	204.0031
Laufwagen L=600 komplett mit zyl. Bolzen	50	204.0034
Laufwagen L=600 komplett mit exz. Bolzen (±1 mm)	50	204.0035


Ersatzteil (2)	В	С	D	Е	BestNr.
Laufwagen L=370	370	320	276	180	204.0005
Laufwagen L=600	600	550	506	410	204.0026

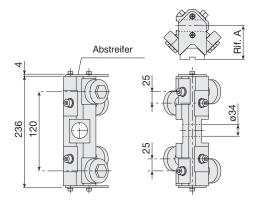

Ersatzteil (1)	Α	Gewicht [Kg]	BestNr.
Zylinderbolzen	75	4,1	236.0010
Exzenterbolzen (±1 mm)	75	4,1	236.0011
Zylinderbolzen	50	3,5	236.0014
Exzenterbolzen (±1 mm)	50	3,5	236.0015

Laufwagen Typ E (Rollen Ø52) und Typ F (Rollen Ø62)

Fester Laufwagen mit 4 Rollen. Geeignet für Montagebolzen: Typ 7-8.

Material: Aluminium-Druckguß Legierung; Bolzen und Buchse aus brüniertem Stahl.

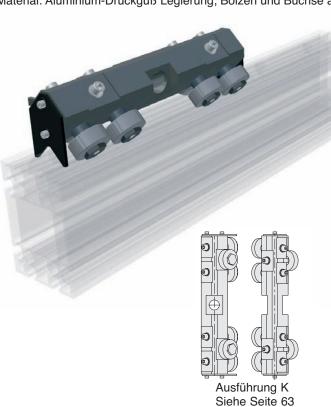
Ø Rollen		A
Rollen Ø52		71,75
Rollen Ø62		78,85
Merkmale	Ø52	Ø62
Anzahl Rollen	4	4
Gewicht [kg.]	4,6	5,2
Ersatzteil	204.1518	204.1519

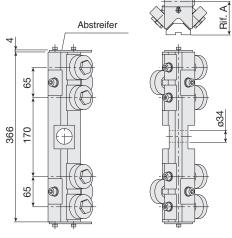

Ø Dallan

Ausführung K Siehe Seite 63

Laufwagen Typ G (Rollen Ø52) und Typ H (Rollen Ø62)

Schwinglaufwagen mit 4 Rollen. Geeignet für Montagebolzen: **Typ 6-9.** Material: Aluminium-Druckguß Legierung; Bolzen und Buchse aus brüniertem Stahl.

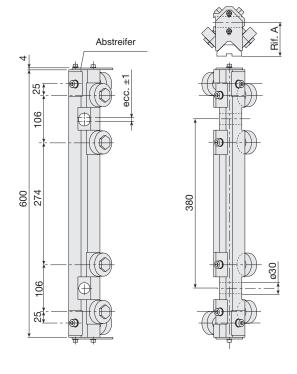



Ø Rollen	Α
Rollen Ø52	71,75
Rollen Ø62	78,85

Merkmale	Ø52	Ø62
Anzahl Rollen	4	4
Gewicht [kg.]	3,2	3,8
Ersatzteil	204.1520	204.1521

Laufwagen Typ I (Rollen Ø52) und Typ L (Rollen Ø62)

Schwinglaufwagen mit 6 Rollen. Geeignet für Montagebolzen: **Typ 6-9.** Material: Aluminium-Druckguß Legierung; Bolzen und Buchse aus brüniertem Stahl.


Ø Rollen	Α
Rollen Ø52	71,75
Rollen Ø62	78,85

Merkmale	Ø52	Ø62
Anzahl Rollen	6	6
Gewicht [kg.]	4,9	5,9
Ersatzteil	204.1522	204.1523

Laufwagen Typ P (Rollen Ø52) und Typ Q (Rollen Ø62)

Fester Laufwagen mit 4 Rollen. Geeignet für Montagebolzen: **Typ 6-9.** Material: Aluminium-Druckguß Legierung; Bolzen und Buchse aus brüniertem Stahl.

Merkmale	Ø52	Ø62
Anzahl Rollen	6	6
Gewicht [kg.]	4,9	5,9
Ersatzteil	204.2086	204.2283

Austausch der Bolzen

Es ist stets darauf zu achten, dass alle Bauteile passend befestigt werden. Das empfohlene Anzugsmoment für Schrauben und Muttern ist 50 Nm.

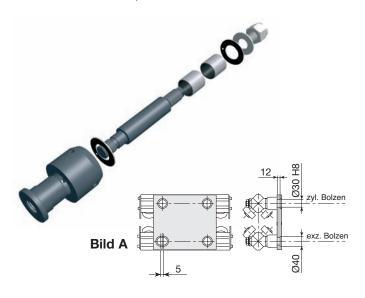
Tragzahlen für gehärtete Führungen

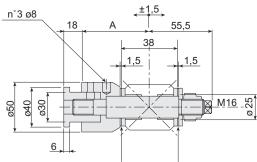
V-Rollen	Cw [N]	C0w[N]	Fr zulässig [N]	Vmax.
Ø40	9800	6200	2600	7 m/s
Ø52	15800	10500	4400	6 m/s
Ø62	21100	14500	5600	5 m/s

Tragzahlen für vergütete Führungen

V-Rollen	Cw [N]	C0w[N]	Fr zulässig [N]	Vmax.
Ø40	9800	6200	700	7 m/s
Ø52	15800	10500	1100	6 m/s
Ø62	21100	14500	1400	5 m/s

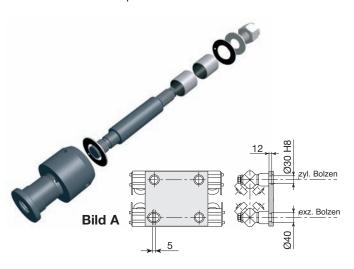
Austausch der Bolzen	Gewicht [Kg]	BestNr.
Ø40 zylindrisch	0,22	205.0464
Ø40 exzentrisch (±0,75 mr	n) 0,25	205.0463
Ø52 zylindrisch	0,4	205.0163
Ø62 zylindrisch	0,55	205.0165

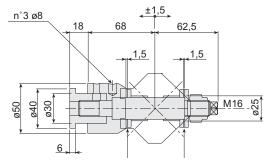

Montagebolzen


Material: brünierter Stahl (Rs=800 N/mm²). Sonder- und Rostfreiausführungen AlSl303 A auf Anfrage verfügbar. Die Ausführungen 0-7-8-9 sind mit Gleitbuchsen ausgestattet, um eine Loslagerfunktion zu gewährleisten.

Montagebolzen Typ 7, geeignet für Laufwagen Typ E-F

Hinweis: die Schlittenplatte nach dem Bild A arbeiten.

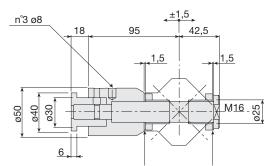



Hinweis: zur Schaffung einer Loslagerfunktion die starken Scheiben entfernen.

Merkmale	Α	
Gewicht [kg.]		1,1 ca.
BestNr zylindrisch	75	236.0010
BestNr exzentrisch (±0,75 mm)	75	236.0011
BestNr zylindrisch	50	236.0014
BestNr exzentrisch (±0,75 mm)	50	236.0015

Montagebolzen Typ 7, geeignet für Laufwagen Typ E-F

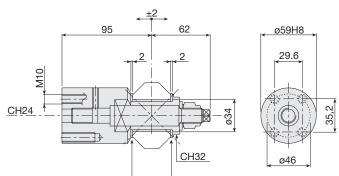
Hinweis: die Schlittenplatte nach dem Bild A arbeiten.



Hinweis: zur Schaffung einer Loslagerfunktion die starken Scheiben entfernen.

Merkmale	
Gewicht [kg.]	1,1 ca.
BestNr zylindrisch	236.1688
BestNr exzentrisch (±1 mm)	236.1689

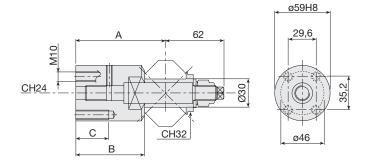
Montagebolzen Typ 8, geeignet für Laufwagen Typ E-F



Hinweis: zur Schaffung einer Loslagerfunktion die starken Scheiben entfernen.

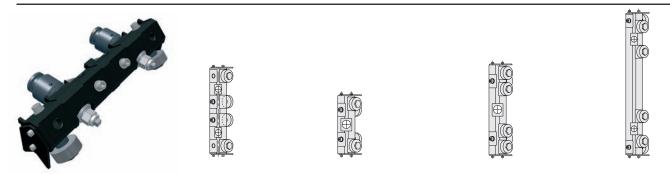
Merkmale	
Gewicht [kg.]	1,8 ca.
BestNr zylindrisch	236.1690
BestNr exzentrisch (±1 mm)	236.1691

Montagebolzen für Schwinglaufwagen Typ 9, geeignet für Laufwagen Typ G-H/I-L

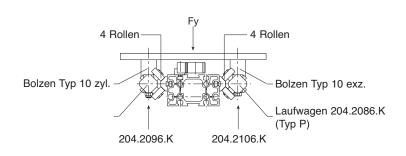


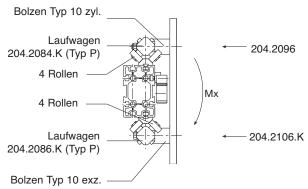
Hinweis: zur Schaffung einer Löslagerfunktion die starken Scheiben entfernen.

Merkmale	
Gewicht [kg.]	2 ca.
BestNr zylindrisch	236.2076
BestNr exzentrisch (±1,5 mm)	236.2079


Montagebolzen für Schwinglaufwagen Typ 10-11-12, geeignet für Laufwagen Typ A-D/P-Q

Тур	Α	В	С	Gew. [Kg]	Zyl.	Exz.
10	95	73	35	2	236.2082	236.2083
11	87	65	27	1,8	236.2088	236.2089
12	78	56	18	1,7	236.2090	236.2091

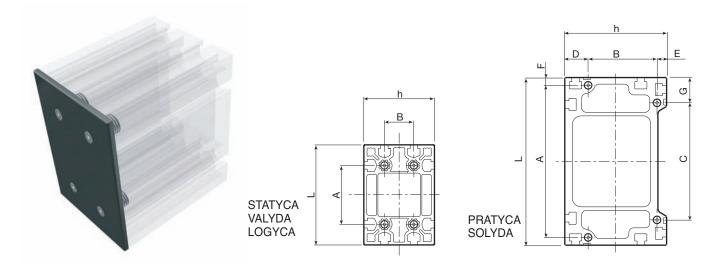

Bestelltabelle für Laufwagen mit Montagebolzen



	en	Laufwa	ngen E	F	G	Н	l l	L	Р	Q
	Bolzen	Ø Rolle	n 52	62	52	62	52	62	52	62
75 69,5	Ш	zyl.	204.1314	204.1318	-	-	-	-	-	-
	7	exz.	204.1344	204.1348	-	-	-	-	-	-
95 42,5		zyl.	204.1315	204.1319	-	-	-	-	-	-
	8	exz.	204.1345	204.1349	-	-	-	-	-	-
(95) 62		zyl.	-	-	204.2092	204.2093	204.2094	204.2095	-	-
	9	exz.	-	-	204.2102	204.2103	204.2104	204.2105	-	-
(95) 62		zyl.	-	-	-	-	-	-	204.2096	204.2097
	10	exz.	-	-	-	-	-	-	204.2106	204.2107
(87) 62 85		zyl.	-	-	-	-	-	-	204.2098	204.2099
	11	exz.	-	-	-	-	-	-	204.2108	204.2109
(78) 62 76		zyl.	-	-	-	-	-	-	204.2100	204.2101
	12	exz.	-	-	-	-	-	-	204.2110	204.2111

Hinweis: Bei Anwendungen mit ausgeladenen schweren Lasten, ist es absolut unerlässlich, die Rollen der Laufwagen auszurichten, damit die Last von der max. Anzahl Rollen aufgenommen wird. Bei der Bestellung die Nachsilbe "K" hinzufügen, wenn die Rollen entsprechend den Belastungen (siehe Montagebeispiel rechts) angepasst werden müssen. Es ist möglich, den Einbau der Rollen später zu korrigieren.

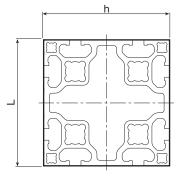
Montagebeispiel: Standard Laufwagen / Ausführung K:


Abdeckkappen für Profile

Die Abdeckkappen für STAYCA, VALYDA und LOGYCA werden durch die 4 mittleren Bohrungen eingesetzt. Befestigung mittels Polyamidstopfen.

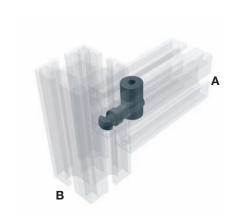
Die Profile PRATYCA und SOLYDA müssen wie in der hier unterdargestellten Zeichnung M6 gebohrt.

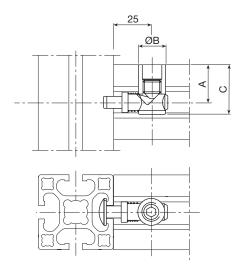
Zur Montage der Abdeckkappen, die Bohrung der Profilenden einbringen.


Material: PVC, schwarz - Dicke 6 mm. Auf Anfrage stehen Abdeckkappen aus Aluminium mit einer Stärke von 6 mm zur Verfügung.

Profil	L	h	Α	В	С	D	BestNr.
202.1753 - STATYCA	170	120	100	50	-	-	212.1774
202.1146 - VALYDA	200	120	100	50	-	-	212.1704
202.2184 - LOGYCA	220	120	150	50	-	-	212.2279
202.1147 - PRATYCA	280	170	254	115	195.5	39	212.1705
202.0342 - SOLYDA	360	200	328	141	265	40	212.1706

Die Abdeckkappen für leichte und mittlere Profile werden einfach durch leichten Druck eingesetzt. Material: schwarzes Polyäthylen, Dicke ca. 5 mm

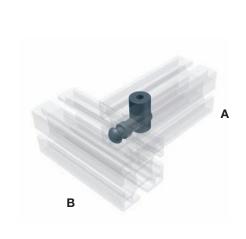


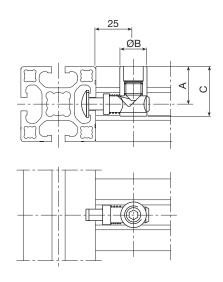


Profil	L	h	BestNr.
MB 1-1	30	30	B40-30
E01-1	45	45	E40-10
E01-2	60	45	E40-20
E01-3	90	45	E40-30
E01-4	90	90	E40-40
E01-5	180	90	Nr. 2 E40-40
E01-6	45	45	E40-10
E01-7	45	20	-
F01-1	60	60	F40-10
F01-2	90	60	F40-20
MA1-3	150	50	A40-30
MA1-5	100	100	A40-50

Verbinder mit rechtwinklig abgeflachtem Ankerkopf

Verbinder mit abgeflachtem Ankerkopf, nachträglich einsetzbar, für das Positionieren zwischen zwei rechtwinklige Profile.



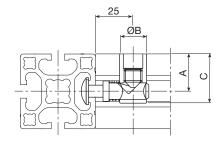


	- 1	Profi A	30	45	50	60
	60		-	-	-	F20-20
B	50		-	-	A20-20	A20-20
rofil	45		-	E20-20	E20-20	E20-20
P	30		B20-20	B210-20	B210-20	B210-20

Profil Basis	30	45	50	60
A Abstand	15	22,5	25	30
B Ø Bohrung	15,1	18,1	18,1	18,1
C Bohrungstiefe	22	30,5	33	38

Verbinder mit parallel abgeflachtem Ankerkopf

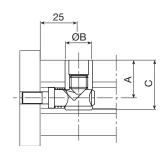
	- 1	Profil A	30	45	50	60
	60		-	-	-	F20-10
m	50		-	-	A20-10	A20-10
rofii	45		-	E20-10	E20-10	E20-10
P	30		B20-10	B210-10	B210-10	B210-10


Profil Basis	30	45	50	60
A Abstand	15	22,5	25	30
B Ø Bohrung	15,1	18,1	18,1	18,1
C Bohrungstiefe	22	30,5	33	38

Standardverbindungen

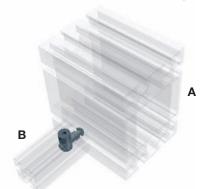
Verbinder mit rundem Ankerkopf, längsseitig in die Profilnuten einsetzbar, für das Positionieren in jeder Stellung zwischen zwei rechtwinklige Profile.

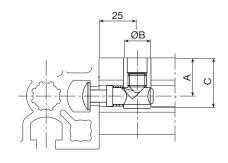
	-	Profil A	30	45	50	60
	60		-	-	-	F20-90
В	50		-	-	A20-90	A20-90
Profil	45		-	E20-90	E20-90	E20-90
	30		B20-90	B20-90	B20-90	B20-90
		-				


Profil Basis	30	45	50	60
A Abstand	15	22,5	25	30
B Ø Bohrung	15,1	18,1	18,1	18,1
C Bohrungstiefe	22	30,5	33	38

Gewindeverbindungen

Verbinder mit Gewindeansatz, für die Montage von Platten oder anderen Bauteilen.

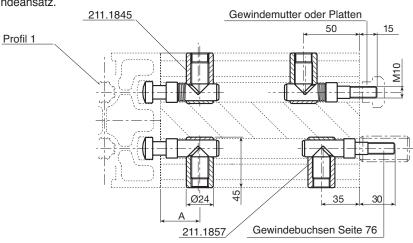

		M6	M8
	60		F20-60
_	50	-	A20-60
rofil	45	-	E20-60
ď	30	B20-66	B20-60


Profil Basis	30	45	50	60
A Abstand	15	22,5	25	30
B Ø Bohrung	15,1	18,1	18,1	18,1
C Bohrungstiefe	22	30,5	33	38

Sonderverbinder

Verbinder mit rundem Ankerkopf, für die Montage von kleinen Profile an großen Profile.

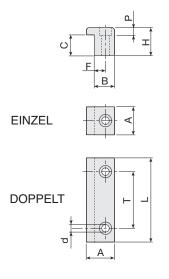
	F	Profil A	Trägerprofile
	60		211.0012
ב	50		211.1851
	45		211.0011
L	30		211.0010



Profil Basis	30	45	50	60
A Abstand	15	22,5	25	30
B Ø Bohrung	15,1	18,1	18,1	18,1
C Bohrungstiefe	22	30,5	33	38

PVS® für Statyca, Valyda und Logyca Profile

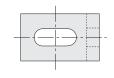
PVS® für Trägerprofile, mit rundem Ankerkopf bzw. Gewindeansatz.

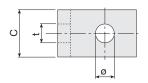


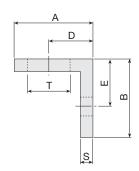

Profil 1	Α
LOGYCA und VALYDA	35
STATYCA	38
Gewinde Ausführung	211.1857
Rund-Ankerkopf Ausführung	211.1845

Befestigungsleisten

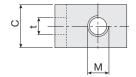
Material: Aluminiumlegierung.

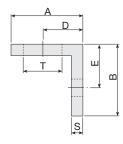

Profil	Α	L	Т	d	Н	Р	С	F	В	M	Einzel	Doppelt
E01-6; E01-1; E01-3/E01-4; E01-5	30	50	25	9	25	9,5	18	12	22	69/114	415.0072	215.0073
F01-1 / F01-2 horizontal	30	50	25	9	30	9,5	25,3	12	22	84/114	215.0044	215.0043
F01-2 senkrecht	30	50	25	9	25	9,5	18	12	22	84	215.0072	215.0073
MA1-3 / MA1-5	25	50	25	6,7	27	6,8	20,6	10	18	120	415.0769	415.0764
STATYCA	30	90	50	11	40	11	28,3	14	25	198	415.0767	415.0762
VALYDA horizontal	30	90	50	11	40	11	28,3	14	25	228	415.0767	415.0762
VALYDA senkrecht	30	90	50	11	50	11	43,1	14	25	148	215.0042	215.0041
LOGYCA	30	90	50	11	40	11	28,3	14	25	248	415.0767	415.0762
PRATYCA horizontal	30	90	50	11	20	11	11,3	14	25	308	415.0768	415.0763
PRATYCA senkrecht	30	90	50	11	25	11	13,5	14	25	198	-	915.1174
SOLYDA horizontal	30	90	50	11	20	11	11,3	14	25	308	415.0768	415.0763
SOLYDA senkrecht	30	90	50	11	25	11	13,5	14	25	198	-	915.1174


Befestigungswinkel

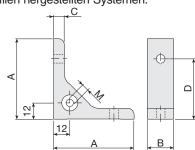

Winkel mit Durchgangsloch

Winkel mit Durchgangsöffnung für die Montage des Zubehörs. Material: Aluminiumlegierung 6060, natur eloxiert.


Α	В	С	D	Ε	S	Tx t	Ø	BestNr.
45	45	20	25	25	5	15 x 6.5	6	A30-76
35	25	20	19	15	5	20 x 6.5	4	A30-54
35	25	20	19	15	5	20 x 6.5	5	A30-55
35	25	20	19	15	5	20 x 6.5	6	A30-56
25	25	15	14	15	4	13.5 x 5.5	3	B30-53
25	25	15	14	15	4	13.5 x 5.5	4	B30-54
25	25	15	14	15	4	13.5 x 5.5	5	B30-55
25	25	15	14	15	4	13.5 x 5.5	6	B30-56


Winkel mit Gewindebohrung

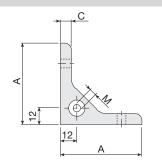
Winkel mit Gewindebohrung für die Montage des Zubehörs. Material: Aluminiumlegierung 6060, Winkel natur eloxiert.

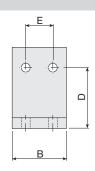

Α	В	С	D	Е	S	Tx t	M	BestNr.
45	45	20	25	25	5	15 x 6.5	M6	A30-86
35	25	20	19	15	5	20 x 6.5	M4	A30-64
35	25	20	19	15	5	20 x 6.5	M5	A30-65
35	25	20	19	15	5	20 x 6.5	M6	A30-66
25	25	15	14	15	4	13.5 x 5.5	МЗ	B30-63
25	25	15	14	15	4	13.5 x 5.5	M4	B30-64
25	25	15	14	15	4	13.5 x 5.5	M5	B30-65
25	25	15	14	15	4	13.5 x 5.5	M6	B30-66

Befestigungswinkel

Montagewinkel für die Montage des Zubehörs und zur Verstärkung von aus Profilen hergestellten Systemen.

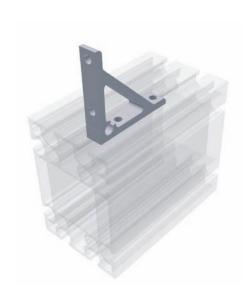
Material: Aluminiumlegierung 6060, natur eloxiert.

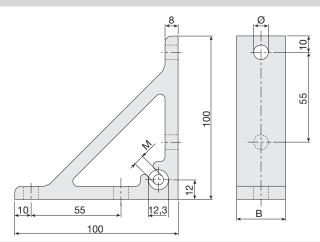



Α	В	С	D	Е	Ø	M	BestNr.
60	20	8	45	-	6,5	-	B30-10
60	20	8	45	-	6,5	M6	B30-20
60	30	8	45	-	9	-	A30-10
60	30	8	45	-	9	M6	A30-20
38	30	8	25	-	9	-	A30-00
31	20	6	20	-	6,5	-	C30-00

Montagewinkel für die Verbindung von Profilen

Material: Aluminiumlegierung 6060, natur eloxiert.





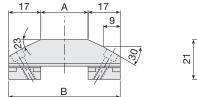
BestNr.	M	Ø	E	D	С	В	Α
A30-02	-	9	50	25	8	80	38
C30-02	-	6,5	40	20	6	60	31

Montagewinkel für die Verbindung von Profilen

Material: Aluminiumlegierung 6060, natur eloxiert.

	M	Ø	BestNr.
Ohne Buchse	-	9	A30-30
Ohne Buchse	-	6,5	B30-30
Mit Buchse	M6	9	A30-40
Mit Buchse	M6	6,5	B30-40

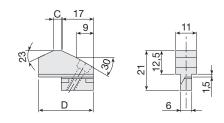
Steuernocken und Nockenleisten für Positionsschalter


Steuernocken lang

Steuernocken gemäß DIN 69639.

Steuernocken abweichend DIN 69639.

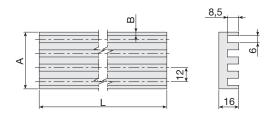
Material: Stahl mit gehärteter und geschliffener Oberfläche.



Α	В	BestNr.
25	59	211.2132
40	74	211.2133
63	97	211.2134
80 #	114	211.2135
100	134	211.2136

Steuernocken kurz

Material: Stahl mit gehärteter und geschliffener Oberfläche. Steuernocken gemäß DIN 69639.

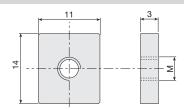


С	D	BestNr.
0	25	211.2128
4	29	211.2129
10	35	211.2130
16	41	211.2131

Nockenleisten

Material: Aluminiumlegierung 6060, eloxiert; gemäß DIN 69638.

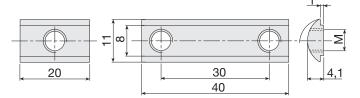
Nr.	В	Α	L	BestNr.
3	3	36	2000	202.2138
4	5.5	53	3000	202.2139
6	5.5	77	3000	202.2140
8	5.5	101	3000	202.2141


Gewindeplatten für leichte und mittlere Profile

Gewindeplatten für Profile Basis 30

Achtung: Vor der Montage am Profilende einzusetzen.

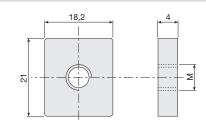
Material: Stahl verzinkt.



Gewinde	BestNr.
M3	B32-30
M4	B32-40
M5	B32-50
M6	B32-60
Feder	211.1077

Gewindeplatten für Profile Basis 30 - nachträglich einsetzbar

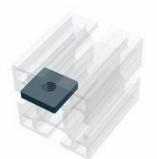
Material: Stahl verzinkt.

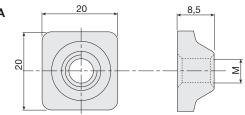

Gewinde	Anz. Bohr.	L	BestNr.
M5	1	20	B32-55
M6	1	20	B32-65
M8	1	20	B32-85
M6	2	40	B32-67

Gewindeplatten für Profile Basis 45/50/60

Achtung: Vor der Montage am Profilende einzusetzen.

Material: Stahl verzinkt.

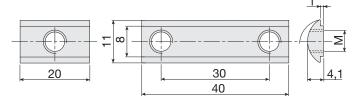



Gewinde	BestNr.
M4	A32-40
M5	A32-50
M6	A32-60
M8	A32-80
Feder	211.1061

Vierkantmutter

Geeignet auch für Trägerprofile Typ STATYCA, VALYDA, LOGYCA, PRATYCA und SOLYDA.

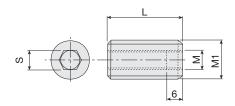
Material: Stahl verzinkt.



Gewinde	BestNr.
M4	209.0023
M5	209.0019
M6	209.1202
M8	209.0467

Gewindeplatten für Profile Basis 45/50/60 - nachträglich einsetzbar

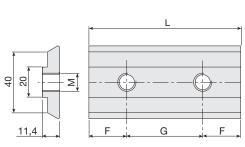
Material: Stahl verzinkt.

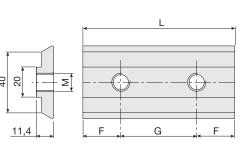

Gewinde	Anz. Bohr.	L	BestNr.
M5	1	20	A32-55
M6	1	20	A32-65
M8	1	20	A32-85
M6	2	40	A32-67

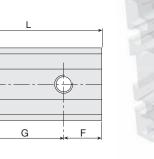
Gewindebuchsen

Material: Stahl verchromt.

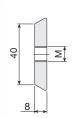
Gewinde M14 oder M16 notwendig.

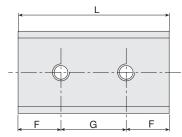

Profil	M1	M	S	L	BestNr.
Basis 30	14	10	10	25	B33-21
Basis 30	14	8	8	25	B33-28
Basis 30	14	6	6	25	B33-26
Basis 45/50/60	16	10	10	25	A33-20
Basis 45/50/60	16	8	8	25	A33-28
Basis 45/50/60	16	6	6	25	A33-26


Gewindeplatten für Trägerprofile

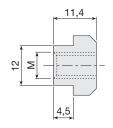

Keileinsätze für VALYDA Profil

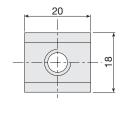
Material: C40, brüniert.


Achtung: Vor der Montage am Profilende einzusetzen. Auf Anfrage können Sondermaße geliefert werden.



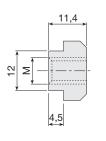
F	G	L	Anz. Bohr.	M8	M10
25	-	50	1	214.0388	214.0394
25	50	100	2	214.0389	214.0395
25	50	200	4	214.0391	214.0398
25	50	300	6	214.0393	214.0400

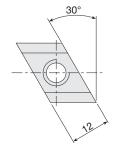

F	G	L	Anz. Bohr.	M10
25	-	50	1	214.0430
25	50	100	2	214.0431
25	50	200	4	214.0433
25	50	300	6	214.0435


Zentriermuttern

Material: Stahl verzinkt.

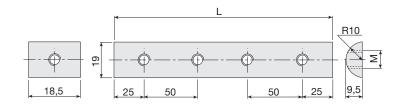
Achtung: Vor der Montage am Profilende einzusetzen.




Gewinde	BestNr.
M5	215.1768
M6	215.1769
M8	215.1770
M10	215.2124

Zentriermuttern - nachträglich einsetzbar

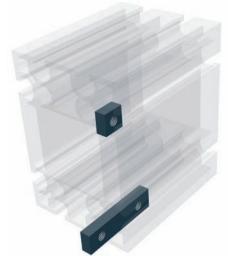
Material: Stahl verzinkt.

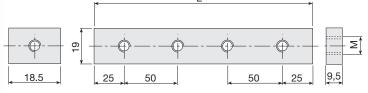


Gewinde	BestNr.
M5	215.1771
M6	215.1772
M8	215.1773
M10	215.2125

Halbrundgewindeplatten - nachträglich einsetzbar

Geeignet auch für Profile Basis 50 außer Best.-Nr. A32-91, aber nicht nachträglich einsetzbar. Material: Stahl verzinkt.

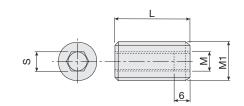



Gewinde	Anz. Bohr.	L	BestNr.
M6	1	18.5	A32-61
M8	1	18.5	A32-81
M10	1	18.5	A32-91
M8	2	80	A32-82
M8	3	150	A32-83
M8	4	200	A32-84
M8	5	250	A32-89
M8	6	300	A32-86
M8	7	350	A32-87

Gewindeplatten

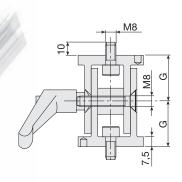
Geeignet auch für Profile Basis 50 außer Best.-Nr. A32-91, aber nicht nachträglich einsetzbar.

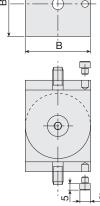
Material: Stahl verzinkt.



Gewinde	Anz. Bohr.	L	BestNr.
M10	1	40	215.0477
M12	1	40	209.1281
M10	1	20	209.1277
M10	2	80	209.1776
M10	3	150	209.1777
M10	4	200	209.1778
M10	5	250	209.1779
M10	6	300	209.1780
M10	7	350	209.1781

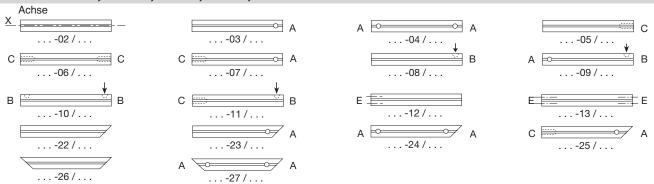
Gewindebuchsen



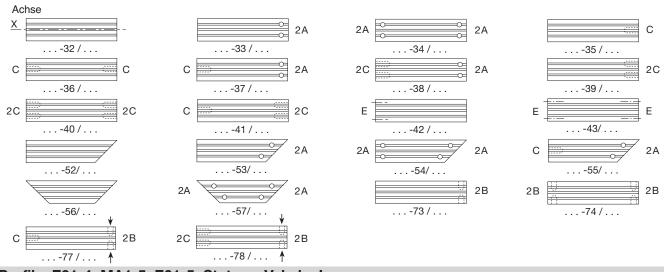

M1	M	S	L	BestNr.
20	6	6	25	207.1892
20	8	8	25	207.1893
20	10	10	25	207.1894
20	12	12	25	207.2288

Gelenke

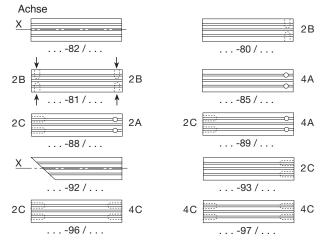
Hauptsächlich zur Verstärkung von Konstruktionen mit schrägen Streben. Auch als Scharnier für schwenkbare Geräteträger, Türen, usw. geeignet.



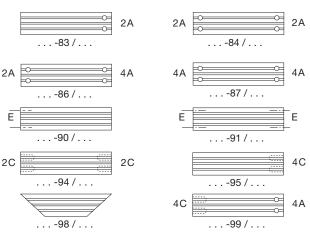
Prof.	В	G	BestNr.	
			mit Schrauben	mit Handgriff
40x40	40	30.0	C90-00	C90-00-M
45x45	45	32.5	E90-00	E90-00-M
50x50	50	35.0	A90-00	A90-00-M


tecline by tecnocenter

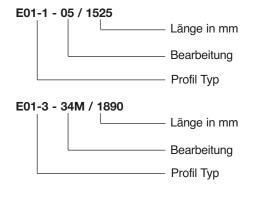
Bearbeitungscode


Profile: MB1-1, E01-6, E01-1, E01-2, F01-1

Profile: E01-3, F01-2, MA1-3

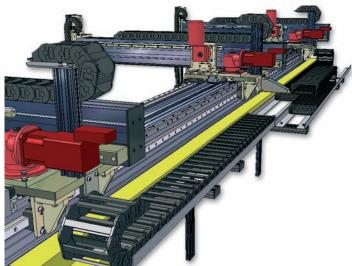


Profile: E01-4, MA1-5, E01-5, Statyca, Valyda, Logyca

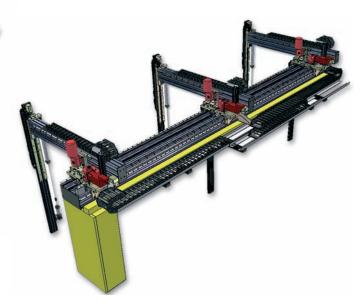


VERZEICHNIS:

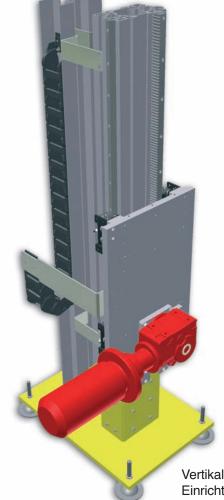
- A PVS®-Bohrung auf Achse X
- B PVS®-Bohrung auf Achse Y
- C* Gewinde M14x25 für Profile mit Mittelbohrung Ø12 Gewinde M16x25 für Profile mit Mittelbohrung Ø14 Gewinde M20x25 für Profile mit Mittelbohrung Ø17,5
- E 4 Gewinde auf Bohrungen neben dem Profilende (M8x20 auf Bohrungen Ø6,8 und M16x20 auf Bohrungen Ø14)
- **M** Dem Bearbeitungscode zu hinzufügen, wenn die Montage der PVS-Verbinder gewünscht wird.

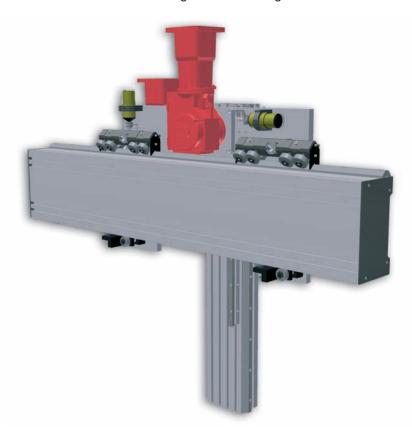


BESTELLBEISPIEL:

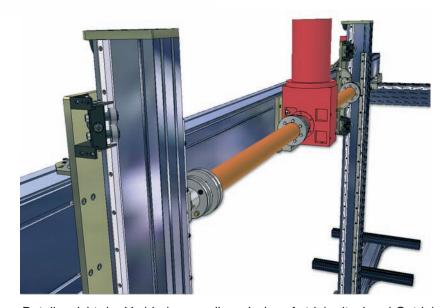


tecline by tecnocenter


^{*} Für Quadrat-Profile wird die Bearbeitung "2C" auf dasselbe Profilende aber in schräg ausgeführt.



Portalsystem mit mehreren Schlitten und unabhängigem Zahnstangen-/Ritzelantrieben in den Achsen X und Y.


2-Achsen Portalsystem an einer Schweißvorrichtung in der Elektrogeräteindustrie.

Vertikalachse – Hub 16 m, für militärische Einrichtungen.

Detailansicht der Verbindungswelle zwischen Antriebsritzel und Getriebe.

tecline by tecnocenter

Stichwortverzeichnis

		David			<u> </u>	. D	0 ::	D	0 17		
Best.Nr.	Seite	Best.Nr.	Seite	Best.Nr.		Best.Nr.	Seite	Best.Nr.	Seite		Seite
1110033	55	2040879	65	2051547	57	2112429	53	2361688	63	4150768	69
1110035	55	2040886	65	2051652	57	2121704	66	2361689	63	4150769	69
1160012	55	2040889	65	2051653	57	2121705	66	2361690	64	4150772	69
1160021	55	2040896	65	2071892	76	2121706	66	2361691	64	4150773	69
1160022	55	2040899	65	2071893	76	2121774	66	2362076	64	4360144	56
1160023	55	2041314	65	2071894	76	2122279	66	2362079	64	4360145	56
1160024	55	2041315	65	2072288	76	2140388	74	2362082	64	4360146	56
1160025	55	2041315	65	2090019	73	2140389	74	2362083	64	4360948	56
2010004	54	2041318	65	2090023	73	2140391	74	2362088	64	4360949	56
2010005	54	2041319	65	2090298	51	2140393	74	2362089	64	4360951	56
2010006	54	2041344	65	2090467	73	2140394	74	2362090	64	4360952	56
2010007	54	2041345	65	2090479	51	2140395	74	2362091	64	4360955	56
2010008	54	2041348	65	2090480	51	2140398	74	2370002	52	4360957	56
2010009	54	2041349	65	2091202	73	2140400	74	2370004	52	4360958	56
2022138	72	2041518	60	2091277	76	2140430	74	2370005	52	4360960	56
2022139	72	2041519	60	2091281	76	2140431	74	2370006	52	4360963	56
2022140	72	2041520	61	2091776	76	2140433	74	2370013	52	4360965	56
2022141	72	2041521	61	2091777	76	2140435	74	2370014	52	4360966	56
2030027	50	2041522	61	2091778	76	2150029	54	2370015	52	4360968	56
2030027	51	2041523	61	2091779	76	2150030	54	2370016	52	4360971	56
2030027	51	2042071	58	2091780	76	2150041	69	2370017	52	4360974	56
2030027	51	2042072	58	2091781	76	2150042	69	2370018	52	4360984	56
2030028	50	2042086	62	2091855	51	2150043	69	2370019	52	4360986	56
2030028	51	2042092	65	2110010	68	2150044	69	2370021	52	4360987	56
2030028	51	2042093	65	2110011	68	2150477	76	2370022	52	9151174	69
2030122	50	2042094	65	2110012	68	2151768	75	2370023	52	SOLYDA	
2030122	51	2042095	65	2111061	73	2151769	75	2370024	52	2020342	15
2030122	51	2042096	65	2111077	73	2151770	75	2370025	52	VALYDA	
2030423	50	2042097	65	2111845	69	2151771	75	2370026	52	2021146	14
2030423	51	2042098	65	2111851	68	2151772	75	2370027	52	PRATYCA	• •
2030423	51	2042099	65	2111857	69	2151773	75	2370028	52	2021147	15
2040004	58	2042100	65	2112128	72	2152078	54	2370028	52	STATYCA	
2040005	60	2042101	65	2112129	72	2152124	75	2371141	52	2021753	13
2040013	59	2042102	65	2112130	72	2152125	75	2371142	52	LOGYCA	10
2040015	59	2042103	65	2112131	72	2152137	54	2371387	52	2022184	14
2040016	59	2042104	65	2112132	72	2152243	54	2371388	52	2170001.M	
2040017	60	2042105	65	2112133	72	2152281	54	2371542	52	2170001.M	
2040017	60	2042106	65	2112134	72	2152368	54	2371543	52	2170002.M	
2040019	58	2042107	65	2112135	72	2152369	54	2372013	52	2170003.M	
2040019	60	2042107	65	2112136	72	2360010	59	2372013	52	A20-10	67
2040027	60	2042109	65	2112349	53	2360010	60	2372120	52	A20-10 A20-10	67
2040027	60	2042109	65	2112349	53	2360010	63	2372157	52	A20-10 A20-20	67
2040028	60	2042110	65	2112349	53		59		52		
	60		62	2112351	53	2360011		2372159		A20-20	67
2040031 2040032		2042283	62		53	2360011 2360011	60 63	2372301	52 52	A20-60 A20-90	68 68
	59 50	2050163		2112363				2372398			
2040033	59 60	2050165	62	2112363	53 53	2360014	59 60	2372421	52	A20-90	68 71
2040034	60	2050463	62	2112366	53	2360014	60	4150762	69	A30-00	71
2040035	60	2050464	62	2112366	53	2360014	63	4150762	69	A30-02	71
2040866	65	2050781	57	2112367	53	2360015	59	4150763	69	A30-02	71
2040869	65	2050782	57	2112367	53	2360015	60	4150764	69	A30-10	71
2040876	65	2051546	57	2112429	53	2360015	63	4150767	69	A30-20	71 -

Stichwortverzeichnis

		.vci2c	10111				
Best.Nr.	Seite	Best.Nr.	Seite	Best.Nr.	Seite	Best.Nr.	Seite
A30-30	71	B30-40	71	E40-10	66	PAS 5/2	37
A30-40	71	B30-53	70	E40-20	66	PAS 5X	23
A30-54	70	B30-54	70	E40-30	66	PAS 6/2	39
A30-55	70	B30-55	70	E40-40	66	PAS 6/4	41
A30-56	70	B30-56	70	E40-40 n°	2 66	PAS 6X	25
A30-64	70	B30-63	70	E90-00	76	PAS 8/3	43
A30-65	70	B30-64	70	E90-00-M	76	PAS 8/6	45
A30-66	70	B30-65	70	F01-1		PAS 8X	27
A30-76	70	B30-66	70	(60x60)	11	PRATYCA	4
A30-86	70	B32-30	73	F01-2		2021147	15
A32-40	73	B32-40	73	(60x90)	11	PROFILOA	."L"
A32-50	73	B32-50	73	F20-10	67	2020001	12
A32-55	74	B32-55	73	F20-20	67	SOLYDA	
A32-60	73	B32-60	73	F20-60	68	2020342	15
A32-61	75	B32-65	73	F20-90	68	STATYCA	
A32-65	74	B32-67	73	F40-10	66	2021753	13
A32-67	74	B32-85	73	F40-20	66	VALYDA	
A32-80	73	B33-21	74	LOGYCA		2021146	14
A32-81	75	B33-26	74	2022184	14		
A32-82	75	B33-28	74	MA1-3			
A32-83	75	B40-30	66	(50x150)	12		
A32-84	75	C30-00	71	MA1-5			
A32-85	74	C30-02	71	(100x100)	13		
A32-86	75	C30-02	71	MB 1-1			
A32-87	75	C90-00	76	(30x30)	10		
A32-89	75	C90-00-M	76	PA 10/6	46		
A32-91	75	E01-1		PA 10/8	48		
A33-20	74	(45x45)	10	PA 10X	28		
A33-26	74	E01-2		PA 2/1	30		
A33-28	74	(45x60)	11	PA 2X	16		
A40-30	66	E01-3		PA 3/1	32		
A40-50	66	(45x90)	11	PA 3X	18		
A90-00	76	E01-4		PA 4/1	34		
A90-00-M	76	(90x90)	12	PA 4X	20		
B20-10	67	E01-5		PA 5/2	36		
B20-20	67	(90x180)	13	PA 5X	22		
B20-60	68	E01-6		PA 6/2	38		
B20-66	68	(45x45)	10	PA 6/4	40		
B20-90	68	E01-7		PA 6X	24		
B20-90	68	(20x45)	10	PA 8/3	42		
B20-90	68	E20-10	67	PA 8/6	44		
B20-90	68	E20-10	67	PA 8X	26		
B210-10	67	E20-10	67	PAS 10/6	47		
B210-10	67	E20-20	67	PAS 10/8	49		
B210-10	67	E20-20	67	PAS 10X	29		
B210-20	67	E20-20	67	PAS 2/1	31		
B210-20	67	E20-60	68	PAS 2X	17		
B210-20	67	E20-90	68	PAS 3/1	33		
B30-10	71	E20-90	68	PAS 3X	19		
B30-20	71	E20-90	68	PAS 4/1	35		
B30-30	71	E40-10	66	PAS 4X	21		
						1	ı