

[Linearkomponenten]

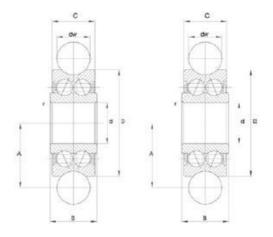
Irrtümer vorbehalten

Linearlaufrollen

Der Aufbau der Laufrollen der Baureihe R entspricht dem Aufbau zweireihiger Schrägkugellager ohne Füllnut. Sie können daher Axiallasten aus beiden Richtungen aufnehmen. Die große Wandstärke des Außenringes erlaubt die Aufnahme hoher Radiallasten.

Die Lauffläche ist als gotischer Bogen profiliert. Damit steht die Laufrolle zur Laufwelle in 2-Punkt-Kontakt.

Laufrollen, Baureihe R


ZZ mit Deckscheiben

2RS mit schleifenden Dichtungen

Linearlaufrollen

		dw	d	D	С	B -0,12	A	r	Gewicht		Tragz	zahlen	
Kurz- bezeichnung										Cw	Cow	Fr zul.	For zul.
ZZ	2RS	mm	mm	mm	mm	mm	mm	mm	g	N	N	N	N
R50/4-4 ZZ	R50/4-4 2RS	4	4	13	6	7	7,55	0,2	7	1050	850	1150	1600
R50/5-4 ZZ	R50/5-4 ZZ	4	5	16	7	8	9	0,2	9	1200	860	1300	1780
R 50/5-6 ZZ	R 50/5-6 2RS	6	5	17	7	8	10,5	0,2	10	1270	820	1300	1780
R 50/8-6 ZZ	R 50/8-6 2RS	6	8	24	11	11	14	0,3	20	3670	2280	1300	4560
R 5201-10 ZZ	R 5201-10 2RS	10	12	35	15,9	15,9	20,65	0,3	80	8500	5100	5100	10200
R 5301-10 ZZ	R 5301-10 2RS	10	12	42	19	19	24	0,6	100	13000	7700	7500	14200
R 5302-10 ZZ	R 5302-10 2RS	10	15	47	19	19	26,65	1	170	16200	9200	6200	18400
R 5201-12 ZZ	R 5201-12 2RS	12	12	35	15,9	15,9	21,75	0,3	85	8400	5000	5100	10000
R 5201-14 ZZ	R 5201-14 2RS	14	12	39,9	18	20	24	0,3	95	8900	5000	6700	12100
R 5204-16 ZZ*	R 5204-16 2RS *	16	20	52	20,6	22,6	31,5	0,6	230	16800	9500	12100	16600
R 5206-20 ZZ*	R 5206-20 2RS *	20	25	72	23,8	25,8	41	0,6	250	29500	16600	20700	33200
R 5206-25 ZZ*	R 5206-25 2RS *	25	25	72	23,8	25,8	43,5	0,6	250	29200	16400	23100	32800
R 5207-30 ZZ*	R 5207-30 2RS *	30	30	80	27	29	51	1	660	38000	20800	21400	36200
R 5208-40 ZZ*	R 5208-40 2RS *	40	40	98	36	38	62,5	1	1360	54800	29000	55000	58000
R 5308-50 ZZ*	R 5308-50 2RS *	50	40	110	44	46	72,5	1,1	1400	53000	39500	69000	79000

Tragfähigkeit und Lebensdauer

Verglichen mit einem Kugellager, das in ein Gehäuse eingebaut ist, zeigen Laufrollen folgende Charakteristika:

- Modifizierte Lastverteilung Dies wird durch die Tragfähigkeiten Cw und Cow

berücksichtigt, die zur Berechnung der Lebensdauer sowie

der Tragsicherheit verwendet werden.

- Wechselbelastung am Außenring Dies wird durch die Grenzbelastung Fr zul und For zul.

berücksichtigt.

Diese Werte sind in der umseitigen Maßtabelle aufgeführt und dürfen nicht überschritten werden.

Die dynamische Tragzahl einer Laufrolle wird durch die Werkstoffermüdung bestimmt. Die Lebensdauer bezeichnet die Zeitdauer, bevor Werkstoffermüdung eintritt.

Nominelle Lebensdauer

Die nominelle Lebensdauer \mathbf{L} wird von 90 % einer genügend großen Menge gleicher Lager erreicht oder überschritten, bevor erste Anzeichen einer Werkstoffermüdung auftreten.

L = ((C_{w})	$(P_{h})^{3}$ $L_{h} = 833 / H \cdot n_{csz} (C_{w} / P)^{3}$		$L_{h} = 166$	56 / v _m (C _w / P) ³
L	[m]	nominelle Lebensdauer in 100.000 m	Н	[m]	einfache Hublänge der oszillierenden Bewegung
	[h]	nominalla Labanadayar	_	Imin 11	Anzahl dar Dannalhüba ia Min

L_h [h] nominelle Lebensdauer n_{osz} [min-1] Anzahl der Doppelhübe je Minute in Betriebsstunden

 ${\rm C_{\rm w}}$ [N] dynamische Tragzahl ${\rm v_{\rm m}}$ m/min mittlere Verfahrgeschwindigkeit

P [N] dynamische äquivalente Belastung

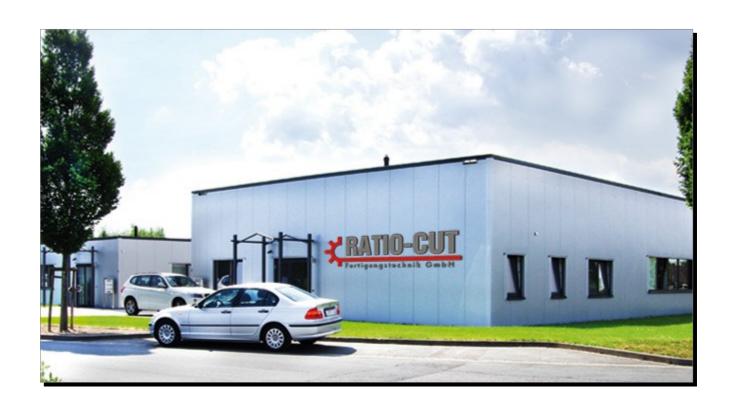
Zulässige dynamische Radialbelastung

Im Anwendungsfall muss sichergestellt sein, dass die zulässige dynamische Radialbelastung $\mathbf{F_{r\,zul}}$ nicht überschritten wird.

Statische Tragzahl

Die statische Tragzahl $\mathbf{C_{0w}}$ basiert auf der elastischen Verformungsgrenze des Werkstoffs. Falls die Belastung die statische Tragzahl übersteigt, kann dies Auswirkungen auf die Funktion als auch auf die Genauigkeit und den Lärmpegel haben.

Statische Tragsicherheit


Die statische Tragsicherheit S_0 erlaubt die Berechnung der zulässigen statischen Last, die die Laufrolle ertragen darf. Sie ist die Sicherheit gegenüber bleibender Verformung im Wälzkontakt innerhalb der Laufrolle. Hinsichtlich der Führungsgenauigkeit sowie der Laufruhe sollte der Wert S_0 = 4 nicht unterschritten werden.

$$\begin{array}{lll} S_0 = (& C_{0w} / P_{0 \text{ max.}}) \\ S_0 & [-] & \text{statische Tragsicherheit} \\ C_{0w} & [N] & \text{wirksame statische Tragzahl} \\ P_0 & [N] & \text{statisch \"aquivalente Belastung} \end{array}$$

Zulässige statische Radialbelastung

Im Anwendungsfall muss sichergestellt sein, dass die zulässige statische Belastung F_{0r zul} nicht überschritten wird.

Hier können Sie mit uns in Kontakt treten:

RATIO-CUT Lineartechnik GmbH Weststraße 61 32657 Lemgo

Tel.: 0049 5261 97478-0 Fax.: 0049 5261 97478-28

Mail: lineartechnik@ratio-cut.de

Web: www.ratio-cut.de