


MVR 105 und MTR 105

Fz
Mz'
Fy
My
Mx Fx

Leistungen			MVR 105	MTR 105	
Max. Hub	Steigung 5 -10 = 4	4550	Steigung	25-50 = 5150	[mm]
Max. Verfahrgeschwindigke	Steigung 10 Steigung 25	[mm] [mm] [mm] [mm]	0,15 0,30 0,75 1,5	0,75 0,15 0,37	[m/s] [m/s] [m/s]
Max. Beschleunigung	(oder Verzögerur	ng)5	2	[m/s ²]	
Wiederholgenauigkeit			± 0,1	± 0,25	[mm]

vviedernoig	jenauigkeit			± 0,1	± 0,25	<u>[mmj</u>
Max. Bela	astungen ເ	ınd Momen	te			
Einheit	$M_x[Nm]$	M _y [Nm]	$M_z[Nm]$	$F_{x}[N]$	$F_y[N]$	$F_z[N]$
MVR 105	185	541	270	3.000(*)	1.230	3.410
MTR 105	185	541	280	4.500(*)	1.230	3.410

Die angegebenen Werte sind als Maximalwerte zu betrachten. Die genannten dynamischen Werte berücksichtigen bereits Sicherheitsfaktoren, wie sie für Maschinen in der Automatisierungstechnik üblich sind.

	Kugelgewindespindel		
2000			
n [rpm]			
Ľ	2 SI		
0	ohne SI		
Länge [mm]			

Max. Hub-Geschwindigkeit Grenzwert, über dem es notwendig ist, Spindelabstützungen (SI) vorzusehen, um unerwüschte Spindelschwingungen zu verhindern. Betriebspunkte in der schraffierten Zone sind zu vermeiden.

Technische Daten		
Führung	Rollen 4 Ø	37 - 4 Ø35 [mm]
Trägerprofil	105x105	(siehe Seite 8)
Spindeldurchmesser	25	[mm]
Spindellänge	440+Hub	[mm]

Gewichte		
Spindelträgheit	0,0003 • Spindellänge	[kgm ²]
Schlittengewicht	4	[kg]
Basis (ohne Hub)	m1=17,2	[kg]
1.000 mm Trägerprofil	m2=14,2	[kg]

Zur Berechnung des Gesamtgewichtes verwendet man die folgende Formel: m ges.= m1+ m2 • Hub/1000 wobei Hub in mm angegeben ist.